CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

[1]  Jennifer A. Doudna,et al.  Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation , 2014, Science.

[2]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[3]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[4]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[5]  Luke A. Gilbert,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2013, Cell.

[6]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[7]  Eugene V Koonin,et al.  The basic building blocks and evolution of CRISPR-CAS systems. , 2013, Biochemical Society transactions.

[8]  Josée Dostie,et al.  Repurposing CRISPR/Cas9 for in situ functional assays , 2013, Genes & development.

[9]  L. Marraffini CRISPR-Cas Immunity against Phages: Its Effects on the Evolution and Survival of Bacterial Pathogens , 2013, PLoS pathogens.

[10]  R. Barrangou,et al.  Genomic impact of CRISPR immunization against bacteriophages. , 2013, Biochemical Society transactions.

[11]  D. Roth,et al.  Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. , 2013, Annual review of genetics.

[12]  R. Barrangou,et al.  CRISPR-MVLST subtyping of Salmonella enterica subsp. enterica serovars Typhimurium and Heidelberg and application in identifying outbreak isolates , 2013, BMC Microbiology.

[13]  Luciano A. Marraffini,et al.  Genetic Characterization of Antiplasmid Immunity through a Type III-A CRISPR-Cas System , 2013, Journal of bacteriology.

[14]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[15]  Albert J R Heck,et al.  Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus. , 2013, Molecular cell.

[16]  L. Tang,et al.  Staphylococcus epidermidis Csm1 is a 3′–5′ exonuclease , 2013, Nucleic acids research.

[17]  Bruce R. Levin,et al.  Dealing with the Evolutionary Downside of CRISPR Immunity: Bacteria and Beneficial Plasmids , 2013, PLoS genetics.

[18]  Yoshio Koyanagi,et al.  Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus , 2013, Scientific Reports.

[19]  Elizabeth Pennisi,et al.  The CRISPR craze. , 2013, Science.

[20]  Wenyan Jiang,et al.  A Ruler Protein in a Complex for Antiviral Defense Determines the Length of Small Interfering CRISPR RNAs , 2013, The Journal of Biological Chemistry.

[21]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[22]  Morgan L. Maeder,et al.  CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.

[23]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[24]  James H. Naismith,et al.  CRISPR interference: a structural perspective , 2013, The Biochemical journal.

[25]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[26]  Feng Zhang,et al.  Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system , 2013, Nucleic acids research.

[27]  Rotem Sorek,et al.  CRISPR-mediated adaptive immune systems in bacteria and archaea. , 2013, Annual review of biochemistry.

[28]  Jörg Vogel,et al.  Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. , 2013, Molecular cell.

[29]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[30]  Rodolphe Barrangou,et al.  CRISPR‐Cas systems and RNA‐guided interference , 2013, Wiley interdisciplinary reviews. RNA.

[31]  K. Severinov,et al.  High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli , 2013, RNA biology.

[32]  David S. Weiss,et al.  A CRISPR-CAS System Mediates Bacterial Innate Immune Evasion and Virulence , 2013, Nature.

[33]  Rodolphe Barrangou,et al.  The Population and Evolutionary Dynamics of Phage and Bacteria with CRISPR–Mediated Immunity , 2013, PLoS genetics.

[34]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[35]  Eugene V Koonin,et al.  CRISPR-Cas , 2013, RNA biology.

[36]  Andrew Camilli,et al.  A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity , 2013, Nature.

[37]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[38]  R. Barrangou,et al.  In vitro reconstitution of Cascade‐mediated CRISPR immunity in Streptococcus thermophilus , 2013, The EMBO journal.

[39]  Christine L. Sun,et al.  Strong bias in the bacterial CRISPR elements that confer immunity to phage , 2013, Nature Communications.

[40]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[41]  Christine L. Sun,et al.  Phage mutations in response to CRISPR diversification in a bacterial population. , 2013, Environmental microbiology.

[42]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[43]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[44]  Peter C. Fineran,et al.  Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. , 2012, Virology.

[45]  Alan R. Davidson,et al.  Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system , 2012, Nature.

[46]  Stan J. J. Brouns,et al.  The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. , 2012, Annual review of genetics.

[47]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[48]  R. Barrangou RNA-mediated programmable DNA cleavage , 2012, Nature Biotechnology.

[49]  M. DeLisa,et al.  Double-stranded Endonuclease Activity in Bacillus halodurans Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas2 Protein* , 2012, The Journal of Biological Chemistry.

[50]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[51]  Daniel Mucida,et al.  CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. , 2012, Cell host & microbe.

[52]  R. Garrett,et al.  Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms , 2012, Molecular microbiology.

[53]  K. Sneppen,et al.  Spatial Structure and Lamarckian Adaptation Explain Extreme Genetic Diversity at CRISPR Locus , 2012, mBio.

[54]  Joshua S Weitz,et al.  MULTISCALE MODEL OF CRISPR-INDUCED COEVOLUTIONARY DYNAMICS: DIVERSIFICATION AT THE INTERFACE OF LAMARCK AND DARWIN , 2012, Evolution; international journal of organic evolution.

[55]  Dipali G. Sashital,et al.  Mechanism of foreign DNA selection in a bacterial adaptive immune system. , 2012, Molecular cell.

[56]  U. Qimron,et al.  The Bacterial CRISPR/Cas System as Analog of the Mammalian Adaptive Immune System , 2012, RNA biology.

[57]  Stan J. J. Brouns,et al.  CRISPR Interference Directs Strand Specific Spacer Acquisition , 2012, PloS one.

[58]  Philippe Horvath,et al.  CRISPR: new horizons in phage resistance and strain identification. , 2012, Annual review of food science and technology.

[59]  J. Doudna,et al.  RNA-guided genetic silencing systems in bacteria and archaea , 2012, Nature.

[60]  Joshua R. Elmore,et al.  Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. , 2012, Molecular cell.

[61]  Jing Zhang,et al.  Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. , 2012, Molecular cell.

[62]  U. Qimron,et al.  Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli , 2012, Nucleic acids research.

[63]  Konstantin Severinov,et al.  Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system , 2012, Nature Communications.

[64]  L. Marraffini,et al.  Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site , 2011, Proceedings of the National Academy of Sciences.

[65]  U. Qimron,et al.  High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system , 2011, Proceedings of the National Academy of Sciences.

[66]  Philippe Horvath,et al.  The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli , 2011, Nucleic acids research.

[67]  Elo Leung,et al.  Targeted Genome Editing Across Species Using ZFNs and TALENs , 2011, Science.

[68]  Eugene V Koonin,et al.  Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems , 2011, Biology Direct.

[69]  Konstantin Severinov,et al.  Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence , 2011, Proceedings of the National Academy of Sciences.

[70]  Stan J. J. Brouns,et al.  Evolution and classification of the CRISPR–Cas systems , 2011, Nature Reviews Microbiology.

[71]  K. Kurokawa,et al.  CRISPR Inhibition of Prophage Acquisition in Streptococcus pyogenes , 2011, PloS one.

[72]  Albert J R Heck,et al.  RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions , 2011, Proceedings of the National Academy of Sciences.

[73]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[74]  S. Shuman,et al.  Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris. , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[75]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[76]  U. Qimron,et al.  The Escherichia coli CRISPR System Protects from λ Lysogenization, Lysogens, and Prophage Induction , 2010, Journal of bacteriology.

[77]  Stan J. J. Brouns,et al.  H‐NS‐mediated repression of CRISPR‐based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO , 2010, Molecular microbiology.

[78]  Sylvain Moineau,et al.  Bacteriophage resistance mechanisms , 2010, Nature Reviews Microbiology.

[79]  Rolf Wagner,et al.  Identification and characterization of E. coli CRISPR‐cas promoters and their silencing by H‐NS , 2010, Molecular microbiology.

[80]  B. Graveley,et al.  RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex , 2009, Cell.

[81]  E. Koonin,et al.  Is evolution Darwinian or/and Lamarckian? , 2009, Biology Direct.

[82]  G. Krauss,et al.  SSO1450 – A CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA , 2009, FEBS letters.

[83]  K. Zhou,et al.  Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. , 2009, Structure.

[84]  Philippe Horvath,et al.  Comparative analysis of CRISPR loci in lactic acid bacteria genomes. , 2009, International journal of food microbiology.

[85]  N. L. Held,et al.  Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. , 2009, Environmental microbiology.

[86]  W. Nelson,et al.  Germ Warfare in a Microbial Mat Community: CRISPRs Provide Insights into the Co-Evolution of Host and Viral Genomes , 2009, PloS one.

[87]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[88]  R. Terns,et al.  Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. , 2008, Genes & development.

[89]  R. Terns,et al.  Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. , 2008, RNA.

[90]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[91]  E. Koonin,et al.  A Novel Family of Sequence-specific Endoribonucleases Associated with the Clustered Regularly Interspaced Short Palindromic Repeats* , 2008, Journal of Biological Chemistry.

[92]  Anders F. Andersson,et al.  Virus Population Dynamics and Acquired Virus Resistance in Natural Microbial Communities , 2008, Science.

[93]  Philippe Horvath,et al.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus , 2007, Journal of bacteriology.

[94]  Philippe Horvath,et al.  Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus , 2007, Journal of bacteriology.

[95]  M. Glickman,et al.  Bacterial DNA repair by non-homologous end joining , 2007, Nature Reviews Microbiology.

[96]  D. Praseuth,et al.  Sequence-specific control of gene expression by antigene and clamp oligonucleotides. , 2007, Ciba Foundation symposium.

[97]  J. Banfield,et al.  Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. , 2007, Environmental microbiology.

[98]  Ibtissem Grissa,et al.  The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats , 2007, BMC Bioinformatics.

[99]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[100]  N. Grishin,et al.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action , 2006, Biology Direct.

[101]  Alexander Bolotin,et al.  Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. , 2005, Microbiology.

[102]  J. García-Martínez,et al.  Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements , 2005, Journal of Molecular Evolution.

[103]  L. Schouls,et al.  Identification of genes that are associated with DNA repeats in prokaryotes , 2002, Molecular microbiology.

[104]  Nick V Grishin,et al.  A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. , 2002, Nucleic acids research.

[105]  P. Groenen,et al.  Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method , 1993, Molecular microbiology.

[106]  K. Makino,et al.  Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product , 1987, Journal of bacteriology.

[107]  Christine L. Sun,et al.  Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. , 2011, Genome research.

[108]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[109]  K. P. Murphy,et al.  Janeway's immunobiology , 2007 .

[110]  G Vergnaud,et al.  CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. , 2005, Microbiology.

[111]  P. Rouet,et al.  Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. , 1995, Nucleic acids research.

[112]  F. Fenner Portraits of viruses , 1988 .

[113]  N. Zinder Portraits of viruses: RNA phage. , 1980, Intervirology.