Data Structures Lower Bounds and Popular Conjectures

In this paper, we investigate the relative power of several conjectures that attracted recently lot of interest. We establish a connection between the Network Coding Conjecture (NCC) of Li and Li [Li and Li, 2004] and several data structure problems such as non-adaptive function inversion of Hellman [M. Hellman, 1980] and the well-studied problem of polynomial evaluation and interpolation. In turn these data structure problems imply super-linear circuit lower bounds for explicit functions such as integer sorting and multi-point polynomial evaluation.

[1]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[2]  Marek Karpinski,et al.  Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields , 1988, SIAM J. Comput..

[3]  Stasys Jukna,et al.  Boolean Function Complexity Advances and Frontiers , 2012, Bull. EATCS.

[4]  Madhur Tulsiani,et al.  Time Space Tradeoffs for Attacks against One-Way Functions and PRGs , 2010, CRYPTO.

[5]  Baochun Li,et al.  Network Coding : The Case of Multiple Unicast Sessions , 2004 .

[6]  Anna Gál,et al.  The cell probe complexity of succinct data structures , 2007, Theor. Comput. Sci..

[7]  Leslie G. Valiant,et al.  Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.

[8]  Leonid Reyzin,et al.  Beyond Hellman's Time-Memory Trade-Offs with Applications to Proofs of Space , 2017, ASIACRYPT.

[9]  Marek Karpinski,et al.  On Zero-Testing and Interpolation of k-Sparse Multivariate Polynomials Over Finite Fields , 1991, Theor. Comput. Sci..

[10]  Leslie G. Valiant,et al.  Exponential lower bounds for restricted monotone circuits , 1983, STOC.

[11]  L. Valiant Why is Boolean complexity theory difficult , 1992 .

[12]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[13]  Amos Fiat,et al.  Rigorous Time/Space Trade-offs for Inverting Functions , 1999, SIAM J. Comput..

[14]  Kasper Green Larsen Higher Cell Probe Lower Bounds for Evaluating Polynomials , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[15]  Kasper Green Larsen,et al.  Lower Bounds for Multiplication via Network Coding , 2019, ICALP.

[16]  Peter Bro Miltersen On the Cell Probe Complexity of Polynomial Evaluation , 1995, Theor. Comput. Sci..

[17]  Marek Karpinski,et al.  Polynomial Interpolation and Identity Testing from High Powers Over Finite Fields , 2015, Algorithmica.

[18]  Emanuele Viola Lower bounds for data structures with space close to maximum imply circuit lower bounds , 2018, Electron. Colloquium Comput. Complex..

[19]  J. Pollard,et al.  The fast Fourier transform in a finite field , 1971 .

[20]  Elaine Shi,et al.  Sorting Short Keys in Circuits of Size o(n log n) , 2020, SODA.

[21]  Dominique Unruh,et al.  Random Oracles and Auxiliary Input , 2007, CRYPTO.

[22]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[23]  Robert D. Kleinberg,et al.  On the capacity of information networks , 2006, IEEE Transactions on Information Theory.

[24]  Alicja Smoktunowicz,et al.  A new efficient algorithm for polynomial interpolation , 2007, Computing.

[25]  Kasper Green Larsen,et al.  Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds , 2017, Electron. Colloquium Comput. Complex..

[26]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[27]  John P. Steinberger,et al.  Random Oracles and Non-Uniformity , 2018, IACR Cryptol. ePrint Arch..

[28]  Christopher Umans,et al.  Fast Modular Composition in any Characteristic , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[29]  Jonathan Katz,et al.  Fixing Cracks in the Concrete: Random Oracles with Auxiliary Input, Revisited , 2017, EUROCRYPT.

[30]  Emanuele Viola,et al.  On the Power of Small-Depth Computation , 2009, Found. Trends Theor. Comput. Sci..

[31]  Henry Corrigan-Gibbs,et al.  The Function-Inversion Problem: Barriers and Opportunities , 2019, Electron. Colloquium Comput. Complex..

[32]  Elaine Shi,et al.  Lower bounds for external memory integer sorting via network coding , 2019, STOC.

[33]  Martin E. Hellman,et al.  A cryptanalytic time-memory trade-off , 1980, IEEE Trans. Inf. Theory.