The coefficients of the immanantal polynomial

Abstract An expression of the coefficient of immanantal polynomial of an n  ×  n matrix is present. Moreover, we give expressions of the coefficient of immanantal polynomials of combinatorial matrices (adjacency matrix, Laplacian matrix, signless Laplacian matrix). As applications, we show that the immanantal polynomials for Laplacian matrix and signless Laplacian matrix of bipartite graphs are the same. This is a generalization of the characteristic polynomial for Laplacian matrix and signless Laplacian matrix of bipartite graphs. Furthermore, we consider the relations between the characteristic polynomial and the immanantal polynomial for trees.

[1]  Gordon G. Cash Immanants and Immanantal Polynomials of Chemical Graphs , 2003, J. Chem. Inf. Comput. Sci..

[2]  Onn Chan,et al.  HOOK IMMANANTAL INEQUALITIES FOR LAPLACIANS OF TREES , 1997 .

[3]  Hong-Jian Lai,et al.  On the permanental sum of graphs , 2018, Appl. Math. Comput..

[4]  Sivaramakrishnan Sivasubramanian,et al.  Hook immanantal and Hadamard inequalities for q-Laplacians of trees , 2017 .

[5]  Ravindra B. Bapat,et al.  A q-analogue of the distance matrix of a tree , 2006 .

[6]  Shujuan Cao,et al.  Network Entropies Based on Independent Sets and Matchings , 2017, Appl. Math. Comput..

[7]  Fuji Zhang,et al.  On the Permanental Polynomials of Some Graphs , 2004 .

[8]  Michael Doob,et al.  Spectra of graphs , 1980 .

[9]  D. Zeilberger,et al.  A Combinatorial Proof of Bass’s Evaluations of the Ihara-Selberg Zeta Function for Graphs , 1998, math/9806037.

[10]  Onn Chan,et al.  Wiener Number as an Immanant of the Laplacian of Molecular Graphs , 1997, J. Chem. Inf. Comput. Sci..

[11]  Russell Merris,et al.  Almost all trees are co-immanantal , 1991 .

[12]  Zoran Stanić Graphs with small spectral gap , 2013 .

[13]  Russell Merris Immanantal invariants of graphs , 2005 .

[14]  Russell Merris,et al.  Permanental polynomials of graphs , 1981 .

[15]  Onn Chan,et al.  Immanant Inequalities for Laplacians of Trees , 1999, SIAM J. Matrix Anal. Appl..

[16]  D. Cvetkovic,et al.  Signless Laplacians of finite graphs , 2007 .

[17]  Suk-Geun Hwang,et al.  Permanents of graphs with cut vertices , 2003 .

[18]  Onn Chan,et al.  HOOK IMMANANTAL INEQUALITIES FOR TREES EXPLAINED , 1998 .

[19]  Bo Hu,et al.  Highly unique network descriptors based on the roots of the permanental polynomial , 2017, Inf. Sci..

[20]  Shuchao Li,et al.  Edge-grafting theorems on permanents of the Laplacian matrices of graphs and their applications , 2012, 1206.4393.

[21]  Hong-Jian Lai,et al.  On the permanental nullity and matching number of graphs , 2016, 1603.03109.

[22]  Tao Li,et al.  Analyzing lattice networks through substructures , 2018, Appl. Math. Comput..

[23]  V. Sunder,et al.  The Laplacian spectrum of a graph , 1990 .

[24]  Xiaogang Liu,et al.  Computing the permanental polynomials of graphs , 2017, Appl. Math. Comput..

[25]  Wei Li,et al.  A Note on the Permanental Roots of Bipartite Graphs , 2014, Discuss. Math. Graph Theory.

[26]  Tao Li,et al.  Vertex-based and edge-based centroids of graphs , 2018, Appl. Math. Comput..

[27]  Russell Merris,et al.  Single-hook characters and hamiltonian circuits ∗ , 1983 .