Predicting the DNA sequence dependence of nanopore ion current using atomic-resolution Brownian dynamics.

It has become possible to distinguish DNA molecules of different nucleotide sequences by measuring ion current passing through a narrow pore containing DNA. To assist experimentalists in interpreting the results of such measurements and to improve the DNA sequence detection method, we have developed a computational approach that has both the atomic-scale accuracy and the computational efficiency required to predict DNA sequence-specific differences in the nanopore ion current. In our Brownian dynamics method, the interaction between the ions and DNA is described by three-dimensional potential of mean force maps determined to a 0.03 nm resolution from all-atom molecular dynamics simulations. While this atomic-resolution Brownian dynamics method produces results with orders of magnitude less computational effort than all-atom molecular dynamics requires, we show here that the ion distributions and ion currents predicted by the two methods agree. Finally, using our Brownian dynamics method, we find that a small change in the sequence of DNA within a pore can cause a large change in the ion current, and validate this result with all-atom molecular dynamics.

[1]  Ioan Kosztin,et al.  Calculating free-energy profiles in biomolecular systems from fast nonequilibrium processes. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  K. Schulten,et al.  The electromechanics of DNA in a synthetic nanopore. , 2006, Biophysical journal.

[3]  Jingmin Jin,et al.  Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. , 2010, Nature nanotechnology.

[4]  W. Im,et al.  Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. , 2002, Journal of molecular biology.

[5]  Aleksei Aksimentiev,et al.  Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix , 2010, Nanotechnology.

[6]  G G Hu,et al.  The B-DNA dodecamer at high resolution reveals a spine of water on sodium. , 1998, Biochemistry.

[7]  V. Kothekar,et al.  Stereochemical aspects of interaction of DNA binding domain of human progesterone receptor with d(AGGTCATGCT)2. , 1992, Indian journal of biochemistry & biophysics.

[8]  Bert Sakmann,et al.  The extracellular patch clamp: A method for resolving currents through individual open channels in biological membranes , 1978, Pflügers Archiv.

[9]  Alessandra Villa,et al.  Self-assembling dipeptides: including solvent degrees of freedom in a coarse-grained model. , 2009, Physical chemistry chemical physics : PCCP.

[10]  W. Im,et al.  Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. , 2004, Biophysical journal.

[11]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[12]  D. Branton,et al.  Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. , 1999, Biophysical journal.

[13]  Artem B Mamonov,et al.  Diffusion constant of K+ inside Gramicidin A: a comparative study of four computational methods. , 2006, Biophysical chemistry.

[14]  Anatoly B Kolomeisky,et al.  Physics of protein-DNA interactions: mechanisms of facilitated target search. , 2011, Physical chemistry chemical physics : PCCP.

[15]  Francis S. Collins,et al.  Genomic medicine--a primer. , 2002, The New England journal of medicine.

[16]  D. Deamer,et al.  Nanopores and nucleic acids: prospects for ultrarapid sequencing. , 2000, Trends in biotechnology.

[17]  Gregory A Voth,et al.  Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. , 2004, The Journal of chemical physics.

[18]  M Karplus,et al.  Molecular dynamics simulations of the gramicidin channel. , 1994, Annual review of biophysics and biomolecular structure.

[19]  B. Roux,et al.  The binding site of sodium in the gramicidin A channel: comparison of molecular dynamics with solid-state NMR data. , 1997, Biophysical journal.

[20]  B. Roux,et al.  Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. Linse,et al.  Effective interaction potentials for alkali and alkaline earth metal ions in SPC/E water and prediction of mean ion activity coefficients. , 2006, Journal of Physical Chemistry B.

[22]  Aleksei Aksimentiev,et al.  Electro-osmotic screening of the DNA charge in a nanopore. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  K. Schulten,et al.  Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel , 2005 .

[24]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[25]  Klaus Schulten,et al.  Protein Response to External Electric Fields: Relaxation, Hysteresis, and Echo , 1996 .

[26]  W. Im,et al.  Brownian dynamics simulations of ions channels: A general treatment of electrostatic reaction fields for molecular pores of arbitrary geometry , 2001 .

[27]  C. Hutchison DNA sequencing: bench to bedside and beyond , 2007, Nucleic acids research.

[28]  K. Schulten,et al.  Microscopic Kinetics of DNA Translocation through synthetic nanopores. , 2004, Biophysical journal.

[29]  L. Delemotte,et al.  Modeling membranes under a transmembrane potential. , 2008, The journal of physical chemistry. B.

[30]  K. Schulten,et al.  Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. , 2005, Biophysical journal.

[31]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[32]  L. Movileanu,et al.  Transport at the nanoscale: temperature dependence of ion conductance , 2008, European Biophysics Journal.

[33]  B. Roux,et al.  Ion selectivity of alpha-hemolysin with beta-cyclodextrin adapter. II. Multi-ion effects studied with grand canonical Monte Carlo/Brownian dynamics simulations. , 2010, Journal of Physical Chemistry B.

[34]  Aleksei Aksimentiev,et al.  Beyond the gene chip , 2005, Bell Labs Technical Journal.

[35]  B Sakmann,et al.  Patch clamp techniques for studying ionic channels in excitable membranes. , 1984, Annual review of physiology.

[36]  G. Timp,et al.  Detecting SNPs using a synthetic nanopore. , 2007, Nano letters.

[37]  Z. Siwy,et al.  Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Aleksei Aksimentiev,et al.  Strain softening in stretched DNA. , 2008, Physical review letters.

[39]  Aleksei Aksimentiev,et al.  Microscopic Perspective on the Adsorption Isotherm of a Heterogeneous Surface. , 2011, The journal of physical chemistry letters.

[40]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[41]  Aleksei Aksimentiev,et al.  Detection of DNA sequences using an alternating electric field in a nanopore capacitor. , 2008, Nano letters.

[42]  A. Aksimentiev,et al.  Electronic Supporting Information for: Atoms-to-Microns Model for Small Solute Transport through Sticky Nanochannels , 2011 .

[43]  G. Timp,et al.  Stretching and unzipping nucleic acid hairpins using a synthetic nanopore , 2008, Nucleic acids research.

[44]  J. Shendure,et al.  Advanced sequencing technologies: methods and goals , 2004, Nature Reviews Genetics.

[45]  K Schulten,et al.  Nanoelectromechanics of methylated DNA in a synthetic nanopore. , 2009, Biophysical journal.

[46]  J. Leburton,et al.  p-n Semiconductor membrane for electrically tunable ion current rectification and filtering. , 2007, Nano letters.

[47]  H. Bayley,et al.  Stochastic detection of enantiomers. , 2006, Journal of the American Chemical Society.

[48]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[49]  M. Karplus,et al.  Simulation of activation free energies in molecular systems , 1996 .

[50]  D. Case,et al.  Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations , 2001 .

[51]  M S Sansom,et al.  Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations. , 1998, Biochemistry.

[52]  J. Leburton,et al.  Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor , 2006 .

[53]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[54]  D. Beglov,et al.  Atomic Radii for Continuum Electrostatics Calculations Based on Molecular Dynamics Free Energy Simulations , 1997 .

[55]  K. Schulten,et al.  Ionic Current Rectification Through Silica Nanopores. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[56]  B. Roux The calculation of the potential of mean force using computer simulations , 1995 .

[57]  T. Sorsch,et al.  Nanopores in solid-state membranes engineered for single molecule detection , 2010, Nanotechnology.

[58]  Manoranjan Panda,et al.  Explicit ion, implicit water solvation for molecular dynamics of nucleic acids and highly charged molecules , 2008, J. Comput. Chem..

[59]  Klaus Schulten,et al.  Molecular control of ionic conduction in polymer nanopores. , 2009, Faraday discussions.

[60]  M. Troll,et al.  Determination of RNA orientation during translocation through a biological nanopore. , 2006, Biophysical journal.

[61]  Grégory Pandraud,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[62]  Gregory A Voth,et al.  Multiscale coarse graining of liquid-state systems. , 2005, The Journal of chemical physics.

[63]  Time-Dependent Rate Coefficients from Brownian Dynamics Simulations , 1996 .

[64]  D. Branton,et al.  Rapid nanopore discrimination between single polynucleotide molecules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Jeremy C. Smith,et al.  Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study. , 1996, Biophysical journal.

[66]  Sergey M. Bezrukov,et al.  Counting polymers moving through a single ion channel , 1994, Nature.

[67]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[68]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[69]  A. Aksimentiev Deciphering ionic current signatures of DNA transport through a nanopore. , 2010, Nanoscale.

[70]  A. Meller,et al.  Nanopore unzipping of individual DNA hairpin molecules. , 2004, Biophysical journal.

[71]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[72]  A. Bird DNA methylation patterns and epigenetic memory. , 2002, Genes & development.

[73]  G. Timp,et al.  Microscopic mechanics of hairpin DNA translocation through synthetic nanopores. , 2009, Biophysical journal.

[74]  G. Timp,et al.  Nanopore Sequencing: Electrical Measurements of the Code of Life , 2010, IEEE Transactions on Nanotechnology.

[75]  A. Aksimentiev,et al.  Exploring transmembrane transport through α -hemolysin with grid-steered molecular dynamics , 2007 .

[76]  S. Gavryushov Electrostatics of B-DNA in NaCl and CaCl2 solutions: ion size, interionic correlation, and solvent dielectric saturation effects. , 2008, The journal of physical chemistry. B.

[77]  C. Sagui,et al.  Molecular dynamics simulations of DNA with polarizable force fields: convergence of an ideal B-DNA structure to the crystallographic structure. , 2006, The journal of physical chemistry. B.

[78]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[79]  N H Dekker,et al.  Low-frequency noise in solid-state nanopores , 2009, Nanotechnology.

[80]  H. Bayley,et al.  Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. , 2005, Angewandte Chemie.

[81]  A. Marziali,et al.  A nanosensor for transmembrane capture and identification of single nucleic Acid molecules. , 2004, Biophysical journal.

[82]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[83]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[84]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[85]  J A McCammon,et al.  Multistep brownian dynamics: Application to short wormlike chains , 1984, Biopolymers.

[86]  M. Winterhalter,et al.  Understanding ion conductance on a molecular level: an all-atom modeling of the bacterial porin OmpF. , 2009, Biophysical journal.

[87]  S. Bezrukov,et al.  Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel. , 2000, Physical review letters.

[88]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[89]  Gerhard Hummer,et al.  Position-dependent diffusion coefficients and free energies from Bayesian analysis of equilibrium and replica molecular dynamics simulations , 2005 .

[90]  S. Cui,et al.  Dynamics of ion migration in nanopores and the effect of DNA-ion interaction. , 2011, The journal of physical chemistry. B.

[91]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[92]  D. J. Price,et al.  A modified TIP3P water potential for simulation with Ewald summation. , 2004, The Journal of chemical physics.

[93]  U. Bockelmann,et al.  Rectification of the Current in α-Hemolysin Pore Depends on the Cation Type: The Alkali Series Probed by Molecular Dynamics Simulations and Experiments , 2011 .

[94]  M. Gautel,et al.  Molecular structure of the sarcomeric Z‐disk: two types of titin interactions lead to an asymmetrical sorting of α‐actinin , 1998, The EMBO journal.

[95]  Andre Marziali,et al.  Noise analysis and reduction in solid-state nanopores , 2007 .