Perturbation-based stochastic multi-scale computational homogenization method for woven textile composites
暂无分享,去创建一个
P. Gosling | Xiao-Yi Zhou | Z. Ullah | L. Kaczmarczyk | C. Pearce | X.-Y. Zhou | P.D. Gosling | C.J. Pearce | Z. Ullah | L. Kaczmarczyk | X. Zhou
[1] Marcin Marek Kaminski,et al. The Stochastic Perturbation Method for Computational Mechanics , 2013 .
[2] Michael A Slawinski,et al. Waves and Rays in Elastic Continua , 2011 .
[3] Pol D. Spanos,et al. A multiscale Monte Carlo finite element method for determining mechanical properties of polymer nanocomposites , 2008 .
[4] Tsu-Wei Chou,et al. Stiffness and strength behaviour of woven fabric composites , 1982 .
[5] Michał Kleiber,et al. The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .
[6] Rajiv A. Naik,et al. Analysis of Woven and Braided Fabric-Reinforced Composites , 1996 .
[7] Hermann G. Matthies,et al. Uncertainty Quantification with Stochastic Finite Elements , 2007 .
[8] Ignace Verpoest,et al. The Mori–Tanaka method applied to textile composite materials , 1998 .
[9] Ala Tabiei,et al. Three-dimensional computational micro-mechanical model for woven fabric composites , 2001 .
[10] M. Tootkaboni,et al. A multi‐scale spectral stochastic method for homogenization of multi‐phase periodic composites with random material properties , 2010 .
[11] V. Carvelli,et al. A homogenization procedure for the numerical analysis of woven fabric composites , 2001 .
[12] Marcin Kamiński,et al. Generalized perturbation-based stochastic finite element method in elastostatics , 2007 .
[13] Christian Soize,et al. Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis , 2012, International Journal for Numerical Methods in Engineering.
[14] Carlos A. Felippa,et al. A unified formulation of small-strain corotational finite elements: I. Theory , 2005 .
[15] Chris J. Pearce,et al. Scale transition and enforcement of RVE boundary conditions in second‐order computational homogenization , 2008 .
[16] Masaru Zako,et al. Three-dimensional stochastic analysis using a perturbation-based homogenization method for elastic properties of composite material considering microscopic uncertainty , 2008 .
[17] Heinz E. Pettermann,et al. Numerical homogenization of textile composites based on shell element discretization , 2012 .
[18] Z. Aboura,et al. A micromechanics model for 3D elasticity and failure of woven-fibre composite materials , 1999 .
[19] Bhavani V. Sankar,et al. Analytical method for micromechanics of textile composites , 1997 .
[20] Stefan Hallström,et al. A Modelling Framework for Composites containing 3D Reinforcement , 2012 .
[21] Jian Cao,et al. A dual homogenization and finite element approach for material characterization of textile composites , 2002 .
[22] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[23] C. Miehe,et al. Computational micro-to-macro transitions of discretized microstructures undergoing small strains , 2002 .
[24] Ignace Verpoest,et al. A three-dimensional micromechanical analysis of woven-fabric composites: I. Geometric analysis , 1996 .
[25] Fpt Frank Baaijens,et al. An approach to micro-macro modeling of heterogeneous materials , 2001 .
[26] Tsu-Wei Chou,et al. One-dimensional micromechanical analysis of woven fabric composites , 1983 .
[27] Raúl A. Feijóo,et al. On micro‐to‐macro transitions for multi‐scale analysis of non‐linear heterogeneous materials: unified variational basis and finite element implementation , 2011 .
[28] Mark Ainsworth,et al. Hierarchic finite element bases on unstructured tetrahedral meshes , 2003 .
[29] Paul Steinmann,et al. Computational modelling and homogenization of technical textiles , 2013 .
[30] J. Michel,et al. Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .
[31] T. M. Damiani,et al. Micromechanics of fabric reinforced composites with periodic microstructure , 2005 .
[32] Christian Soize,et al. Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials , 2013 .
[33] Michał Kleiber,et al. Perturbation based stochastic finite element method for homogenization of two-phase elastic composites , 2000 .
[34] S. Sriramula,et al. Quantification of uncertainty modelling in stochastic analysis of FRP composites , 2009 .
[35] Fumihiro Ashida,et al. Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method , 2008 .