Perturbation-based stochastic multi-scale computational homogenization method for woven textile composites

In this paper, a stochastic homogenization method that couples the state-of-the-art computational multi-scale homogenization method with the stochastic finite element method, is proposed to predict the statistics of the effective elastic properties of textile composite materials. Uncertainties associated with the elastic properties of the constituents are considered. Accurately modeling the fabric reinforcement plays an important role in the prediction of the effective elastic properties of textile composites due to their complex structure. The p-version finite element method is adopted to refine the analysis. Performance of the proposed method is assessed by comparing the mean values and coefficients of variation for components of the effective elastic tensor obtained from the present method against corresponding results calculated by using Monte Carlo simulation method for a plain-weave textile composite. Results show that the proposed method has sufficient accuracy to capture the variability in effective elastic properties of the composite induced by the variation of the material properties of the constituents.

[1]  Marcin Marek Kaminski,et al.  The Stochastic Perturbation Method for Computational Mechanics , 2013 .

[2]  Michael A Slawinski,et al.  Waves and Rays in Elastic Continua , 2011 .

[3]  Pol D. Spanos,et al.  A multiscale Monte Carlo finite element method for determining mechanical properties of polymer nanocomposites , 2008 .

[4]  Tsu-Wei Chou,et al.  Stiffness and strength behaviour of woven fabric composites , 1982 .

[5]  Michał Kleiber,et al.  The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .

[6]  Rajiv A. Naik,et al.  Analysis of Woven and Braided Fabric-Reinforced Composites , 1996 .

[7]  Hermann G. Matthies,et al.  Uncertainty Quantification with Stochastic Finite Elements , 2007 .

[8]  Ignace Verpoest,et al.  The Mori–Tanaka method applied to textile composite materials , 1998 .

[9]  Ala Tabiei,et al.  Three-dimensional computational micro-mechanical model for woven fabric composites , 2001 .

[10]  M. Tootkaboni,et al.  A multi‐scale spectral stochastic method for homogenization of multi‐phase periodic composites with random material properties , 2010 .

[11]  V. Carvelli,et al.  A homogenization procedure for the numerical analysis of woven fabric composites , 2001 .

[12]  Marcin Kamiński,et al.  Generalized perturbation-based stochastic finite element method in elastostatics , 2007 .

[13]  Christian Soize,et al.  Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis , 2012, International Journal for Numerical Methods in Engineering.

[14]  Carlos A. Felippa,et al.  A unified formulation of small-strain corotational finite elements: I. Theory , 2005 .

[15]  Chris J. Pearce,et al.  Scale transition and enforcement of RVE boundary conditions in second‐order computational homogenization , 2008 .

[16]  Masaru Zako,et al.  Three-dimensional stochastic analysis using a perturbation-based homogenization method for elastic properties of composite material considering microscopic uncertainty , 2008 .

[17]  Heinz E. Pettermann,et al.  Numerical homogenization of textile composites based on shell element discretization , 2012 .

[18]  Z. Aboura,et al.  A micromechanics model for 3D elasticity and failure of woven-fibre composite materials , 1999 .

[19]  Bhavani V. Sankar,et al.  Analytical method for micromechanics of textile composites , 1997 .

[20]  Stefan Hallström,et al.  A Modelling Framework for Composites containing 3D Reinforcement , 2012 .

[21]  Jian Cao,et al.  A dual homogenization and finite element approach for material characterization of textile composites , 2002 .

[22]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[23]  C. Miehe,et al.  Computational micro-to-macro transitions of discretized microstructures undergoing small strains , 2002 .

[24]  Ignace Verpoest,et al.  A three-dimensional micromechanical analysis of woven-fabric composites: I. Geometric analysis , 1996 .

[25]  Fpt Frank Baaijens,et al.  An approach to micro-macro modeling of heterogeneous materials , 2001 .

[26]  Tsu-Wei Chou,et al.  One-dimensional micromechanical analysis of woven fabric composites , 1983 .

[27]  Raúl A. Feijóo,et al.  On micro‐to‐macro transitions for multi‐scale analysis of non‐linear heterogeneous materials: unified variational basis and finite element implementation , 2011 .

[28]  Mark Ainsworth,et al.  Hierarchic finite element bases on unstructured tetrahedral meshes , 2003 .

[29]  Paul Steinmann,et al.  Computational modelling and homogenization of technical textiles , 2013 .

[30]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[31]  T. M. Damiani,et al.  Micromechanics of fabric reinforced composites with periodic microstructure , 2005 .

[32]  Christian Soize,et al.  Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials , 2013 .

[33]  Michał Kleiber,et al.  Perturbation based stochastic finite element method for homogenization of two-phase elastic composites , 2000 .

[34]  S. Sriramula,et al.  Quantification of uncertainty modelling in stochastic analysis of FRP composites , 2009 .

[35]  Fumihiro Ashida,et al.  Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method , 2008 .