A Rayleigh–Ritz preconditioner for the iterative solution to large scale nonlinear problems

The approximation to the solution of large sparse symmetric linear problems arising from nonlinear systems of equations is considered. We are focusing herein on reusing information from previous processes while solving a succession of linear problems with a Conjugate Gradient algorithm. We present a new Rayleigh–Ritz preconditioner that is based on the Krylov subspaces and superconvergence properties, and consists of a suitable reuse of a given set of Ritz vectors. The relevance and the mathematical foundations of the current approach are detailed and the construction of the preconditioner is presented either for the unconstrained or the constrained problems. A corresponding practical preconditioner for iterative domain decomposition methods applied to nonlinear elasticity is addressed, and numerical validation is performed on a poorly-conditioned large-scale practical problem.

[1]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[4]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[5]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[6]  Christian Rey Une technique d'accélération de la résolution de problèmes d'élasticité non linéaire par décomposition de domaines , 1996 .

[7]  David S. Watkins,et al.  Convergence of algorithms of decomposition type for the eigenvalue problem , 1991 .

[8]  James Demmel,et al.  On a Block Implementation of Hessenberg Multishift QR Iteration , 1989, Int. J. High Speed Comput..

[9]  Charbel Farhat,et al.  An Optimal Lagrange Multiplier Based Domain Decomposition Method for Plate Bending Problems , 1995 .

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..

[12]  Charbel Farhat,et al.  A unified framework for accelerating the convergence of iterative substructuring methods with Lagrange multipliers , 1998 .

[13]  H. V. D. Vorst,et al.  The rate of convergence of Conjugate Gradients , 1986 .

[14]  François-Xavier Roux Méthode de décomposition de domaine a l'aide de multiplicateurs de Lagrange et application a la résolution en parallèle des équations de l'élasticité linéaire , 1989 .

[15]  W. Karush An iterative method for finding characteristic vectors of a symmetric matrix , 1951 .

[16]  H. Keller The Bordering Algorithm and Path Following Near Singular Points of Higher Nullity , 1983 .

[17]  B. Parlett A new look at the Lanczos algorithm for solving symmetric systems of linear equations , 1980 .