A comparison of high precision F0 extraction algorithms for sustained vowels.

Perturbation analysis of sustained vowel waveforms is used routinely in the clinical evaluation of pathological voices and in monitoring patient progress during treatment. Accurate estimation of voice fundamental frequency (F0) is essential for accurate perturbation analysis. Several algorithms have been proposed for fundamental frequency extraction. To be appropriate for clinical use, a key consideration is that an F0 extraction algorithm be robust to such extraneous factors as the presence of noise and modulations in voice frequency and amplitude that are commonly associated with the voice pathologies under study. This work examines the performance of seven F0 algorithms, based on the average magnitude difference function (AMDF), the input autocorrelation function (AC), the autocorrelation function of the center-clipped signal (ACC), the autocorrelation function of the inverse filtered signal (IFAC), the signal cepstrum (CEP), the Harmonic Product Spectrum (HPS) of the signal, and the waveform matching function (WM) respectively. These algorithms were evaluated using sustained vowel samples collected from normal and pathological subjects. The effect of background noise and of frequency and amplitude modulations on these algorithms was also investigated, using synthetic vowel waveforms.