Towards a bihamiltonian structure for the double ramification hierarchy

We propose a remarkably simple and explicit conjectural formula for a bihamiltonian structure of the double ramification hierarchy corresponding to an arbitrary homogeneous cohomological field theory. Various checks are presented to support the conjecture.

[1]  P. Rossi,et al.  Quantum D4 Drinfeld–Sokolov hierarchy and quantum singularity theory , 2018, Journal of Geometry and Physics.

[2]  R. Pandharipande,et al.  Logarithmic series and Hodge integrals in the tautological ring. With an appendix by Don Zagier. , 2000, math/0002112.

[3]  Maxim Kontsevich,et al.  Intersection theory on the moduli space of curves and the matrix airy function , 1992 .

[4]  A. Buryak,et al.  Double Ramification Cycles and Quantum Integrable Systems , 2015, 1503.03687.

[5]  Deformations of semisimple bihamiltonian structures of hydrodynamic type , 2004, math/0405146.

[6]  Jonathan Wise,et al.  Stable maps to rational curves and the relative Jacobian , 2013, 1310.5981.

[7]  B. Dubrovin,et al.  Integrable Systems of Double Ramification Type , 2016, International Mathematics Research Notices.

[8]  Edward Witten,et al.  Two-dimensional gravity and intersection theory on moduli space , 1990 .

[9]  R. Kramer,et al.  Central invariants revisited , 2016, 1611.09134.

[10]  P. Rossi Integrability, Quantization and Moduli Spaces of Curves , 2017, 1703.00232.

[11]  R. Pandharipande,et al.  Double ramification cycles on the moduli spaces of curves , 2016, 1602.04705.

[12]  L. Dickey Soliton Equations and Hamiltonian Systems , 2003 .

[13]  A. Buryak,et al.  Integrals of ψ-classes over double ramification cycles , 2015 .

[14]  B. Dubrovin,et al.  Bihamiltonian Hierarchies in 2D Topological Field Theory At One-Loop Approximation , 1997, hep-th/9712232.

[15]  M. Kontsevich,et al.  Gromov-Witten classes, quantum cohomology, and enumerative geometry , 1994 .

[16]  Boris Dubrovin,et al.  On Hamiltonian perturbations of hyperbolic systems of conservation laws , 2004 .

[17]  B. Dubrovin,et al.  Tau-Structure for the Double Ramification Hierarchies , 2016, Communications in Mathematical Physics.

[18]  S. Shadrin,et al.  A polynomial bracket for the Dubrovin--Zhang hierarchies , 2010, 1009.5351.

[19]  R. Hain Normal Functions and the Geometry of Moduli Spaces of Curves , 2011, 1102.4031.

[20]  S. Shadrin,et al.  Deformations of semisimple poisson pencils of hydrodynamic type are unobstructed , 2015, 1501.04295.

[21]  You-jin Zhang,et al.  Jacobi Structures of Evolutionary Partial Differential Equations , 2009, 0910.2085.

[22]  B. Dubrovin,et al.  Frobenius manifolds and Virasoro constraints , 1998, math/9808048.

[23]  A. Buryak,et al.  Double Ramification Cycles and Integrable Hierarchies , 2014, 1403.1719.

[24]  Robert M. Miura,et al.  Korteweg‐deVries Equation and Generalizations. V. Uniqueness and Nonexistence of Polynomial Conservation Laws , 1970 .

[25]  R. Pandharipande,et al.  Relations on $\overline {\mathcal {M}}_{g,n}$ via $3$-spin structures , 2014 .

[26]  Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov - Witten invariants , 2001, math/0108160.

[27]  A. Buryak,et al.  DR/DZ equivalence conjecture and tautological relations , 2017, Geometry & Topology.

[28]  S. Shadrin,et al.  On deformations of quasi-Miura transformations and the Dubrovin–Zhang bracket , 2011, 1104.2722.

[29]  Yuri I. Manin,et al.  Frobenius manifolds, quantum cohomology, and moduli spaces , 1999 .

[30]  The Extended Toda Hierarchy , 2003, nlin/0306060.

[31]  A. Buryak,et al.  Towards a description of the double ramification hierarchy for Witten's $r$-spin class , 2015, 1507.05882.

[32]  Si‐Qi Liu Lecture Notes on Bihamiltonian Structures and Their Central Invariants , 2018 .

[33]  You-jin Zhang,et al.  Bihamiltonian Cohomologies and Integrable Hierarchies I: A Special Case , 2012, 1208.5847.

[34]  A. Buryak,et al.  Recursion Relations for Double Ramification Hierarchies , 2014, 1411.6797.