Quantum mechanical origin of QSAR: theory and applications

Abstract In this paper, search is carried out on how to develop the formalism where quantum similarity measures (QSM) become a natural product of the theoretical framework. This fact is later used to establish a fundamental connection between quantum theory and QSAR, which is analysed in turn within the realm of discrete quantum chemistry. In order to perform such a task, several theoretical tools are revised in a previous step. The first section is devoted to construct the concept of tagged set . Next, the definition of quantum object (QO) is clarified by means of ideas from a quantum theory background and the previous tagged set formalism. In the definition of QO, density functions (DF) play a fundamental role and a possible simplified mathematical picture is presented. On the road to prepare the problem solving tools, convex sets result to be prominent, and the notion of vector semispace appears as a consequence. The transformation rule , a device to connect wavefunctions with DF, is defined in a new step. Various products of this preliminary discussion are described, among others the concept of kinetic energy and other observable distributions. QSM as a source of discrete representation of molecular structures is made evident in this context. Further theoretical development intends to study discretisation, the transformation of infinite dimensional functional spaces into n -dimensional ones. This result adds new perspectives to the discrete representation of QO, because it (a) provides a source of new QO descriptors, like a generalisation of scalar product and new similarity indices, (b) describes the QSPR theoretical background enabling the construction of the adequate mathematical tools in order to discuss connected problems (limitations of linear models, tuned-QSAR, p -valued classification of QO, among others), (c) allows the construction of sound and general alternatives of Hammet's σ or log  P parameters. All the steps above summarised are completed and illustrated, when possible, with practical application examples and visualisation pictures.

[1]  Chengteh Lee,et al.  An approach to molecular similarity using density functional theory , 1994 .

[2]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[3]  I. Jolliffe Principal Component Analysis , 2002 .

[4]  Han van de Waterbeemd,et al.  Chemometric methods in molecular design , 1995 .

[5]  Andrew C. Good,et al.  Utilization of Gaussian functions for the rapid evaluation of molecular similarity , 1992, J. Chem. Inf. Comput. Sci..

[6]  David Robert,et al.  A Formal Comparison between Molecular Quantum Similarity Measures and Indices , 1998, J. Chem. Inf. Comput. Sci..

[7]  Ramon Carbó-Dorca,et al.  Quantum similarity measures under atomic shell approximation: First order density fitting using elementary Jacobi rotations , 1997 .

[8]  Efficient algorithm for quantitative assessment of similarities among atoms in molecules , 1996, Journal of computational chemistry.

[9]  Emili Besalú,et al.  Quantum molecular similarity measures (QMSM) as a natural way leading towards a theoretical foundation of quantitative structure-properties relationships (QSPR) , 1995 .

[10]  A. Hopfinger A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis , 1980 .

[11]  A. Riera On the shape and structure of molecules , 1992 .

[12]  J. D. Petke Cumulative and discrete similarity analysis of electrostatic potentials and fields , 1993, J. Comput. Chem..

[13]  Robert Ponec,et al.  A novel approach to the characterization of molecular similarity. The 2nd order similarity index , 1990 .

[14]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[15]  R. Mcweeny,et al.  Shape and similarity: two aspects of molecular recognition , 1991 .

[16]  Robert Ponec Similarity approach to chemical reactivity. A simple criterion for discriminating between one-step and stepwise reaction mechanisms in pericyclic reactivity , 1993, J. Chem. Inf. Comput. Sci..

[17]  Blanca Calabuig,et al.  A concurrent algorithm for parallel calculation of eigenvalues and eigenvectors of real symmetric matrices , 1992 .

[18]  Jerzy Cioslowski,et al.  Universality among topological properties of electron density associated with the hydrogen–hydrogen nonbonding interactions , 1992 .

[19]  Emili Besalú,et al.  A general survey of molecular quantum similarity , 1998 .

[20]  X Gironés,et al.  A comparative study of isodensity surfaces using ab initio and ASA density functions. , 1998, Journal of molecular graphics & modelling.

[21]  Emili Besalú,et al.  Triple density molecular quantum similarity measures: A general connection between theoretical calculations and experimental results , 1992 .

[22]  Emili Besalú,et al.  Structure‐Activity Relationships of a Steroid Family using Quantum Similarity Measures and Topological Quantum Similarity Indices , 1997 .

[23]  R. Mcweeny,et al.  The density matrix in many-electron quantum mechanics I. Generalized product functions. Factorization and physical interpretation of the density matrices , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[25]  P. Atkins,et al.  Molecular Quantum Mechanics , 1970 .

[26]  Ajay A unified framework for using neural networks to build QSARs. , 1993, Journal of medicinal chemistry.

[27]  Paul G. Mezey,et al.  Advances in Molecular Similarity , 1996 .

[28]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[29]  Ramón Carbó,et al.  Molecular similarity and reactivity : from quantum chemical to phenomenological approaches , 1995 .

[30]  Emili Besalú,et al.  Molecular Quantum Similarity: theoretical Framework, Ordering Principles, and Visualization Techniques12 , 1994 .

[31]  M. Klobukowski,et al.  Well-tempered gaussian basis set expansions of Roothaan-Hartree-Fock atomic wavefunctions for lithium through mercury , 1988 .

[32]  R Benigni,et al.  Molecular similarity matrices and quantitative structure-activity relationships: a case study with methodological implications. , 1995, Journal of medicinal chemistry.

[33]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[34]  S. Fraga,et al.  Computational chemistry : structure, interactions, and reactivity , 1992 .

[35]  P. Dirac Principles of Quantum Mechanics , 1982 .

[36]  X Gironés,et al.  Using molecular quantum similarity measures as descriptors in quantitative structure-toxicity relationships. , 1999, SAR and QSAR in environmental research.

[37]  R. Carbó-Dorca,et al.  Extending molecular similarity to energy surfaces: Boltzmann similarity measures and indices , 1996 .

[38]  M. Hazewinkel Encyclopaedia of mathematics , 1987 .

[39]  C Hansch,et al.  Mutagenicity of substituted (o-phenylenediamine)platinum dichloride in the Ames test. A quantitative structure-activity analysis. , 1980, Journal of medicinal chemistry.

[40]  F. Fratev,et al.  Application of the similarity measure. An estimation of the degree of fragmentation of a molecule in ground and excited states , 1979 .

[41]  Gordon S. G. Beveridge,et al.  Optimization: theory and practice , 1970 .

[42]  Catherine Burt,et al.  The application of molecular similarity calculations , 1990 .

[43]  Ramon Carbó,et al.  LCAO–MO similarity measures and taxonomy† , 1987 .

[44]  C. Hansch,et al.  QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS OF THE BENZODIAZEPINES. A REVIEW AND REEVALUATION , 1994 .

[45]  C. Hansch,et al.  A NEW SUBSTITUENT CONSTANT, PI, DERIVED FROM PARTITION COEFFICIENTS , 1964 .

[46]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .

[47]  Matt Challacombe,et al.  Maximum similarity orbitals for analysis of the electronic excited states , 1991 .

[48]  C. M. Cuadras,et al.  A distance based regression model for prediction with mixed data , 1990 .

[49]  F. L. Pilar,et al.  Elementary Quantum Chemistry , 1968 .

[50]  Alan Jeffrey,et al.  Handbook of mathematical formulas and integrals , 1995 .

[51]  Barry T. Pickup,et al.  Quantum theory of molecular electronic structure , 1980 .

[52]  Emili Besalú,et al.  On quantum molecular similarity measures (QMSM) and indices (QMSI) , 1996 .

[53]  David L. Cooper,et al.  Molecular similarity of anti-HIV phospholipids , 1993 .

[54]  Eugene D. Fleischmann,et al.  Assessing molecular similarity from results of ab initio electronic structure calculations , 1991 .

[55]  R. Ponec,et al.  Topological aspects of chemical reactivity. Evans-Dewar principle in terms of molecular similarity approach , 1991 .

[56]  Alan Watt,et al.  Advanced animation and rendering techniques , 1992 .

[57]  Emili Besalú,et al.  APPLICATION OF MOLECULAR QUANTUM SIMILARITY TO QSAR , 1997 .

[58]  David L. Cooper,et al.  Momentum-space electron densities and quantum molecular similarity , 1995 .

[59]  H. Kubinyi,et al.  3D QSAR in drug design. , 2002 .

[60]  D A Pierre,et al.  Optimization Theory with Applications , 1986 .

[61]  Blanca Calabuig,et al.  Molsimil - 88: Molecular similarity calculations using a CNDO-like approximation , 1989 .

[62]  S. Wold,et al.  PLS: Partial Least Squares Projections to Latent Structures , 1993 .

[63]  Ramon Carbó-Dorca,et al.  Toward a global maximization of the molecular similarity function: Superposition of two molecules , 1997 .

[64]  David Robert,et al.  On the extension of quantum similarity to atomic nuclei: Nuclear quantum similarity , 1998 .

[65]  Marvin Marcus A Survey of Finite Mathematics , 1964 .

[66]  David L. Cooper,et al.  A novel approach to molecular similarity , 1989, J. Comput. Aided Mol. Des..

[67]  Asiri Nanayakkara,et al.  Similarity of atoms in molecules , 1993 .

[68]  Ramon Carbó-Dorca,et al.  Quantum similarity measures, molecular cloud description, and structure-properties relationships , 1992, J. Chem. Inf. Comput. Sci..

[69]  佐藤 茂雄 E.G. Harris: A Pedestrian Approach to Quantum Field Theory, Wiley-Interscience, New York and London, 1972, xii+167 ページ, 23.5×16cm , 1973 .

[70]  P. Löwdin Linear algebra for quantum theory , 1998 .

[71]  R. Dedekind Essays on the theory of numbers , 1963 .

[72]  Ramon Carbó-Dorca,et al.  Quantum similarity approach to LFER: substituent and solvent effects on the acidities of carboxylic acids , 1999 .

[73]  Jordi Mestres,et al.  On the calculation of ab initio quantum molecular similarities for large systems: Fitting the electron density , 1994, J. Comput. Chem..

[74]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[75]  Ramon Carbó-Dorca,et al.  Tagged sets, convex sets and quantum similarity measures , 1998 .

[76]  J. V. Ortiz,et al.  Molecular similarity indices in electron propagator theory , 1991 .

[77]  David L. Cooper,et al.  Molecular dissimilarity: a momentum-space criterion , 1992 .

[78]  Similarity approach to chemical reactivity. Specificity of multibond processes , 1990 .

[79]  Ramon Carbó-Dorca,et al.  Fitted electronic density functions from H to Rn for use in quantum similarity measures: cis‐diamminedichloroplatinum(II) complex as an application example , 1999 .

[80]  Emili Besalú,et al.  Definition and quantum chemical applications of nested summation symbols and logical functions: Pedagogical artificial intelligence devices for formulae writing, sequential programming and automatic parallel implementation , 1995 .

[81]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[82]  Ramon Carbó-Dorca,et al.  Atomic Shell Approximation: Electron Density Fitting Algorithm Restricting Coefficients to Positive Values , 1995, J. Chem. Inf. Comput. Sci..

[83]  Ramon Carbó,et al.  Quantum molecular similarity measures and the n-dimensional representation of a molecular set : phenyldimethylthiazines , 1992 .

[84]  Robert Ponec,et al.  Electron correlation in pericyclic reactivity : a similarity approach , 1992 .

[85]  Ramon Carbo,et al.  How similar is a molecule to another? An electron density measure of similarity between two molecular structures , 1980 .

[86]  Alexander Davydov,et al.  Quantum Mechanics , 2019, Stars and Stellar Processes.

[87]  S. Lippard,et al.  Structural aspects of platinum anticancer drug interactions with DNA , 1987 .

[88]  M. Persico,et al.  Avoided crossing of molecular excited states and photochemistry: Butadiene and unprotonated Schiff base , 1983 .

[89]  David Robert,et al.  Three-Dimensional Quantitative Structure-Activity Relationships from Tuned Molecular Quantum Similarity Measures: Prediction of the Corticosteroid-Binding Globulin Binding Affinity for a Steroid Family , 1999, J. Chem. Inf. Comput. Sci..

[90]  Ramon Carbó-Dorca,et al.  Molecular basis of quantitative structure-properties relationships (QSPR): A quantum similarity approach , 1999, J. Comput. Aided Mol. Des..

[91]  Ramon Carbó-Dorca,et al.  Facet diagrams for quantum similarity data , 1999, J. Comput. Aided Mol. Des..

[92]  Emili Besalú,et al.  Molecular Quantum Similarity Measures Tuned 3D QSAR: An Antitumoral Family Validation Study , 1998, J. Chem. Inf. Comput. Sci..

[93]  Edward E. Hodgkin,et al.  Molecular similarity based on electrostatic potential and electric field , 1987 .

[94]  W. Greiner Relativistic Quantum Mechanics , 1990 .

[95]  Gg Balint-Kurti,et al.  Lecture notes in Chemistry , 2000 .

[96]  A. Good,et al.  The calculation of molecular similarity: alternative formulas, data manipulation and graphical display. , 1992, Journal of molecular graphics.

[97]  R. Cramer,et al.  Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. , 1988, Journal of the American Chemical Society.

[98]  David Robert,et al.  Analyzing the Triple Density Molecular Quantum Similarity Measures with the INDSCAL Model , 1998, J. Chem. Inf. Comput. Sci..

[99]  W. G. Richards,et al.  Rapid evaluation of shape similarity using Gaussian functions , 1993, J. Chem. Inf. Comput. Sci..

[100]  K. Sen,et al.  Molecular Similarity I , 1995 .

[101]  J. Stoer,et al.  Convexity and Optimization in Finite Dimensions I , 1970 .

[102]  Jacopo Tomasi,et al.  Molecular SCF Calculations for the Ground State of Some Three‐Membered Ring Molecules: (CH2)3, (CH2)2NH, (CH2)2NH2+, (CH2)2O, (CH2)2S, (CH)2CH2, and N2CH2 , 1970 .

[103]  Nenad Trinajstic,et al.  QSAR of Flavylium Salts as Inhibitors of Xanthine Oxidase , 1998, J. Chem. Inf. Comput. Sci..

[104]  On the statistical interpretation of density functions: Atomic shell approximation, convex sets, discrete quantum chemical molecular representations, diagonal vector spaces and related problems , 1998 .

[105]  David M. Allen,et al.  The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction , 1974 .

[106]  Marvin Johnson,et al.  Concepts and applications of molecular similarity , 1990 .

[107]  Roman Jackiw,et al.  Intermediate Quantum Mechanics , 1973 .

[108]  R. Mcweeny Some Recent Advances in Density Matrix Theory , 1960 .

[109]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[110]  O. E. Polansky,et al.  Application of distance and similarity measures. The comparison of molecular electronic structures in arbitrary electronic states , 1979 .

[111]  R. Carbó,et al.  Molecular quantum similarity measures and N-dimensional representation of quantum objects. I. Theoretical foundations† , 1992 .

[112]  Paul G. Mezey,et al.  Shape in Chemistry: An Introduction to Molecular Shape and Topology , 1993 .

[113]  Ramon Carbó-Dorca,et al.  Molecular quantum similarity measures as an alternative to log P values in QSAR studies , 1998 .

[114]  R. E. Moss,et al.  Advanced Molecular Quantum Mechanics , 1973 .

[115]  Ramon Carbó-Dorca Fuzzy sets and Boolean tagged sets , 1997 .