Forming water-soluble CdSe/ZnS QDs using amphiphilic polymers, stearyl methacrylate/methylacrylate copolymers with different hydrophobic moiety ratios and their optical properties and stability

The amphiphilic stearyl methacrylate/methylacrylic acid copolymers (PSMs) were used as phase transfer reagents to convert CdSe/ZnS core-shell quantum dots (QDs) in chloroform to water-soluble PSMs-coated quantum dots (PSM-QDs). The optical properties and stability of PSM-QDs were influenced by the hydrophobic moiety ratios of PSMs, the PSM/QDs mass/volume ratio and the reaction time. The resulting PSM-QDs on optimum reaction conditions retained 60% of the photoluminescence value of the original CdSe/ZnS QDs in chloroform. The carboxylate-based PSM-QDs survived UV irradiation in air for at least 15 days. Upon UV irradiation, the PSM-QDs became about 2 times brighter than the original CdSe/ZnS QDs in chloroform, and the UV-brightened PL can retain the brightness for at least several months. Experimental results further confirmed the stability of PSM-QDs against strong acid, photochemical and thermal treatments. In addition to good performance of PSM-QDs, the synthesis of PSM and the corresponding water-soluble QDs is relatively simple.

[1]  Klavs F. Jensen,et al.  Full Color Emission from II–VI Semiconductor Quantum Dot–Polymer Composites , 2000 .

[2]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[3]  Hong Yang,et al.  “Pulling” Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of α-Cyclodextrin , 2003 .

[4]  William W. Yu,et al.  Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. , 2004, Chemical communications.

[5]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[6]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[7]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[8]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[9]  Byron Ballou,et al.  Noninvasive imaging of quantum dots in mice. , 2004, Bioconjugate chemistry.

[10]  Xiaogang Peng,et al.  Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals , 2003 .

[11]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[12]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[13]  Xiaogang Peng,et al.  Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent , 2002 .

[14]  S. Nie,et al.  A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. , 2006, Physical chemistry chemical physics : PCCP.

[15]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[16]  Igor L. Medintz,et al.  Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. , 2005, Journal of the American Chemical Society.

[17]  Wensheng Yang,et al.  Synthesis of water-soluble ZnS : Mn2+ nanocrystals by using mercaptopropionic acid as stabilizer , 2003 .

[18]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[19]  Jessica O. Winter,et al.  Recognition Molecule Directed Interfacing Between Semiconductor Quantum Dots and Nerve Cells , 2001 .

[20]  Hongyou Fan,et al.  Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot-micelles , 2005, SPIE BiOS.

[21]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[22]  Thomas Nann,et al.  Single quantum dots in spherical silica particles. , 2004, Angewandte Chemie.

[23]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[24]  Z. Tang,et al.  Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores , 2004 .

[25]  Rebekah Drezek,et al.  Water-soluble quantum dots for biomedical applications. , 2006, Biochemical and biophysical research communications.

[26]  Moungi G Bawendi,et al.  Oligomeric ligands for luminescent and stable nanocrystal quantum dots. , 2003, Journal of the American Chemical Society.

[27]  Paul Mulvaney,et al.  Tunable whispering gallery mode emission from quantum-dot-doped microspheres. , 2005, Small.

[28]  Joachim O. Rädler,et al.  Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals , 2004 .

[29]  Xiaogang Peng,et al.  Conjugation Chemistry and Bioapplications of Semiconductor Box Nanocrystals Prepared via Dendrimer Bridging , 2003 .

[30]  Stephen G. Hickey,et al.  Highly Luminescent Water-Soluble CdTe Quantum Dots , 2003 .

[31]  Paul Mulvaney,et al.  Silica encapsulation of quantum dots and metal clusters , 2000 .

[32]  Shuming Nie,et al.  Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. , 2003, Journal of the American Chemical Society.

[33]  Vicki L. Colvin,et al.  Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent , 2004 .

[34]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[35]  Rebekah Drezek,et al.  Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. , 2007, Journal of the American Chemical Society.

[36]  Elizabeth L. Bentzen,et al.  Surface modification to reduce nonspecific binding of quantum dots in live cell assays. , 2005, Bioconjugate chemistry.

[37]  Shimon Weiss,et al.  Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. , 2004, Journal of the American Chemical Society.

[38]  A. Marcus,et al.  Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. , 2007, Journal of the American Chemical Society.

[39]  Timothy Thatt Yang Tan,et al.  Robust, Non‐Cytotoxic, Silica‐Coated CdSe Quantum Dots with Efficient Photoluminescence , 2005 .

[40]  D. Pang,et al.  Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films. , 2006, The journal of physical chemistry. B.

[41]  H. Jalanko,et al.  The Number of Podocyte Slit Diaphragms Is Decreased in Minimal Change Nephrotic Syndrome , 2002, Pediatric Research.

[42]  Xiaogang Peng,et al.  Control of photoluminescence properties of CdSe nanocrystals in growth. , 2002, Journal of the American Chemical Society.

[43]  Xiaogang Peng,et al.  Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. , 2001, Journal of the American Chemical Society.

[44]  Rebekah Drezek,et al.  Protease-activated quantum dot probes. , 2005, Biochemical and biophysical research communications.

[45]  Xiaogang Peng,et al.  Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. , 2002, Angewandte Chemie.

[46]  Nicholas A. Kotov,et al.  “Raisin Bun”-Type Composite Spheres of Silica and Semiconductor Nanocrystals , 2000 .

[47]  Shimon Weiss,et al.  Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots† , 2001 .