Caracterización no invasiva de la actividad auricular durante los instantes previos a la terminación de la fibrilación auricular paroxística

Introduccion y objetivos Mediante procesado de senal se puede analizar la actividad auricular en fibrilacion auricular (FA) desde los registros de superficie y obtener una informacion muy proxima a la de los registros intracavitarios. El objetivo del trabajo es estudiar las modificaciones electrocardiograficas en la FA durante el intervalo previo a su conversion espontanea a ritmo sinusal. Metodos De 50 pacientes, se selecciono un episodio de FA paroxistica de mas de 2 h. De cada episodio se analizo el ultimo minuto antes de la reversion a ritmo sinusal (grupo S) y el minuto central (grupo N). Se comparo a los dos grupos analizando la respuesta ventricular, la morfologia de ondas f y el analisis frecuencial y de organizacion de la actividad auricular aplicando procesado de senal. Resultados La variabilidad RR fue un parametro discriminativo, aunque con poca especificidad (grupo S, 630 ± 200 ms; grupo N, 740 ± 100 ms; p = 0,034). El analisis morfologico de ondas f no mostro diferencias significativas. El grupo S presento una frecuencia auricular dominante media significativamente menor (grupo S, 5,01 ± 0,671 Hz; grupo N = 6,514 ± 0,804 Hz; p = 4,55 × 10−9). La medida de organizacion de la actividad auricular fue significativamente mayor en el grupo S (grupo S, 0,071 ± 0,012; grupo N, 0,103 ± 0,013; p = 6,73 × 10−12). Conclusiones El minuto electrocardiografico previo a la conversion espontanea de la FA muestra un proceso de organizacion de la actividad auricular dificilmente apreciable mediante analisis morfologico de las ondas f, aunque predecible mediante procesado de senal.

[1]  D. Vergani,et al.  Heart rate variability and early recurrence of atrial fibrillation after electrical cardioversion. , 2001, Journal of the American College of Cardiology.

[2]  J. Jalife,et al.  Temporal Organization of Atrial Activity and Irregular Ventricular Rhythm During Spontaneous Atrial Fibrillation: , 2000, Journal of cardiovascular electrophysiology.

[3]  P. Platonov,et al.  Deterioration of interatrial conduction in patients with paroxysmal atrial fibrillation: electroanatomic mapping of the right atrium and coronary sinus. , 2004, Heart rhythm.

[4]  MARCELLO DISERTORI,et al.  Deterioration of Organization in the First Minutes of Atrial Fibrillation: A Beat‐to‐Beat Analysis of Cycle Length and Wave Similarity , 2007, Journal of cardiovascular electrophysiology.

[5]  Willis J. Tompkins,et al.  A Real-Time QRS Detection Algorithm , 1985, IEEE Transactions on Biomedical Engineering.

[6]  Shankar Muthu Krishnan,et al.  ECG signal conditioning by morphological filtering , 2002, Comput. Biol. Medicine.

[7]  M. Ferdjallah,et al.  Adaptive digital notch filter design on the unit circle for the removal of powerline noise from biomedical signals , 1994, IEEE Transactions on Biomedical Engineering.

[8]  Leif Sörnmo,et al.  Atrial fibrillatory rate and sinus rhythm maintenance in patients undergoing cardioversion of persistent atrial fibrillation. , 2006, European heart journal.

[9]  Leif Sörnmo,et al.  Validation and Clinical Application of Time‐Frequency Analysis of Atrial Fibrillation Electrocardiograms , 2007, Journal of cardiovascular electrophysiology.

[10]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[11]  I Dotsinsky,et al.  Optimization of bi-directional digital filtering for drift suppression in electrocardiogram signals , 2004, Journal of medical engineering & technology.

[12]  Martin Stridh,et al.  Frequency Measures Obtained from the Surface Electrocardiogram in Atrial Fibrillation Research and Clinical Decision‐Making , 2003, Journal of cardiovascular electrophysiology.

[13]  P. Toutouzas,et al.  Differences in the morphology and duration between premature P waves and the preceding sinus complexes in patients with a history of paroxysmal atrial fibrillation , 2003, Clinical cardiology.

[14]  Federico Cantini,et al.  Noninvasive ECG as a Tool for Predicting Termination of Paroxysmal Atrial Fibrillation , 2007, IEEE Transactions on Biomedical Engineering.

[15]  Dong-Gu Shin,et al.  Prediction of paroxysmal atrial fibrillation using nonlinear analysis of the R-R interval dynamics before the spontaneous onset of atrial fibrillation. , 2006, Circulation journal : official journal of the Japanese Circulation Society.

[16]  Steven Swiryn,et al.  Relationship between pattern of occurrence of atrial fibrillation and surface electrocardiographic fibrillatory wave characteristics. , 2004, Heart rhythm.

[17]  Volkan Tuzcu,et al.  Decrease in the heart rate complexity prior to the onset of atrial fibrillation. , 2006, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[18]  Günter Schreier,et al.  Predicting initiation and termination of atrial fibrillation from the ECG , 2007, Biomedizinische Technik. Biomedical engineering.

[19]  Leif Sörnmo,et al.  Predicting spontaneous termination of atrial fibrillation using the surface ECG. , 2006, Medical engineering & physics.

[20]  M. Lesh,et al.  Relationship between atrial fibrillation and typical atrial flutter in humans: activation sequence changes during spontaneous conversion. , 1997, Circulation.

[21]  P. Langley,et al.  Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. , 2006, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[22]  José Millet-Roig,et al.  Atrial activity extraction for atrial fibrillation analysis using blind source separation , 2004, IEEE Transactions on Biomedical Engineering.

[23]  S Swiryn,et al.  Evidence for Transient Linking of Atrial Excitation During Atrial Fibrillation in Humans , 1992, Circulation.

[24]  Prashanthan Sanders,et al.  Changes in Atrial Fibrillation Cycle Length and Inducibility During Catheter Ablation and Their Relation to Outcome , 2004, Circulation.

[25]  Philip Langley,et al.  Surface Atrial Frequency Analysis in Patients with Atrial Fibrillation: , 2004, Journal of cardiovascular electrophysiology.

[26]  M. Allessie,et al.  High-density mapping of electrically induced atrial fibrillation in humans. , 1994, Circulation.

[27]  S. Cerutti,et al.  Linear and nonlinear coupling between atrial signals , 2006, IEEE Engineering in Medicine and Biology Magazine.

[28]  Robert Ploutz-Snyder,et al.  Mechanisms of Wave Fractionation at Boundaries of High-Frequency Excitation in the Posterior Left Atrium of the Isolated Sheep Heart During Atrial Fibrillation , 2006, Circulation.

[29]  A. Sahakian,et al.  Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity. , 1992, Journal of electrocardiology.

[30]  J. Langberg,et al.  Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG. , 1999, Cardiovascular research.

[31]  Hsuan-Ming Tsao,et al.  Frequency analysis in different types of paroxysmal atrial fibrillation. , 2006, Journal of the American College of Cardiology.

[32]  Federico Lombardi,et al.  Autonomic nervous system and paroxysmal atrial fibrillation: a study based on the analysis of RR interval changes before, during and after paroxysmal atrial fibrillation. , 2004, European heart journal.

[33]  G. Calcagnini,et al.  Descriptors of wavefront propagation , 2006, IEEE Engineering in Medicine and Biology Magazine.

[34]  B. Gersh,et al.  Long-Term Progression and Outcomes With Aging in Patients With Lone Atrial Fibrillation: A 30-Year Follow-Up Study , 2007, Circulation.

[35]  A. Bollmann,et al.  Frequency analysis of human atrial fibrillation using the surface electrocardiogram and its response to ibutilide. , 1998, The American journal of cardiology.

[36]  L. Sörnmo,et al.  Non-invasive assessment of the atrial cycle length during atrial fibrillation in man: introducing, validating and illustrating a new ECG method. , 1998, Cardiovascular research.

[37]  D. Abásolo,et al.  Entropy analysis of the EEG background activity in Alzheimer's disease patients , 2006, Physiological measurement.

[38]  C. Israel,et al.  Prevalence, characteristics and clinical implications of regular atrial tachyarrhythmias in patients with atrial fibrillation: insights from a study using a new implantable device. , 2001, Journal of the American College of Cardiology.

[39]  Jaap Haaksma,et al.  Clustering of RR Intervals Predicts Effective Electrical Cardioversion for Atrial Fibrillation , 2004, Journal of cardiovascular electrophysiology.

[40]  Steven M. Pincus Assessing Serial Irregularity and Its Implications for Health , 2001, Annals of the New York Academy of Sciences.

[41]  G. Nollo,et al.  Dynamic electrophysiological behavior of human atria during paroxysmal atrial fibrillation. , 1995, Circulation.

[42]  J. Richman,et al.  Physiological time-series analysis using approximate entropy and sample entropy. , 2000, American journal of physiology. Heart and circulatory physiology.

[43]  F. Hornero,et al.  Analysis of the postoperative epicardial auriculogram after surgical ablation of atrial fibrillation: risk stratification of late recurrences. , 2007, The Journal of thoracic and cardiovascular surgery.