1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function

Audrey Y. Chu | C. Gieger | M. Waldenberger | O. Franco | A. Hofman | A. Uitterlinden | E. Mihailov | F. Hu | T. Lehtimäki | E. Boerwinkle | Z. Kutalik | K. Strauch | P. Ridker | D. Chasman | V. Gudnason | J. Viikari | H. Völzke | P. Mitchell | I. Borecki | Albert Vernon Smith | M. Imboden | N. Probst-Hensch | Stefan Enroth | O. Raitakari | A. Dehghan | A. Köttgen | Qiong Yang | Shih-Jen Hwang | F. Rivadeneira | J. Coresh | C. Fox | T. Meitinger | K. Lohman | Yongmei Liu | R. Scott | A. Metspalu | T. Esko | H. Snieder | D. Ruderfer | C. Meisinger | I. Heid | T. Harris | M. Swertz | J. Lambert | R. Schmidt | H. Schmidt | R. Biffar | G. Homuth | A. Teumer | U. Völker | G. Curhan | O. Gottesman | E. Bottinger | J. Attia | G. Eiriksdottir | E. Holliday | M. Kähönen | L. Launer | P. Vollenweider | T. Aspelund | V. Chouraki | M. Feitosa | I. Nolte | A. Robino | B. Tayo | P. J. van der Most | Jingzhong Ding | P. Gasparini | A. Oldehinkel | R. Loos | Ashish Kumar | Man Li | M. Cornelis | Å. Johansson | L. Lyytikäinen | M. Bochud | U. Gyllensten | P. Pramstaller | G. Navis | C. Fuchsberger | M. Nauck | R. Rettig | Ming-Huei Chen | C. Huth | A. Chu | Yingchang Lu | C. Böger | M. Cocca | G. Girotto | M. Gorski | G. Tromp | S. Ulivi | M. McEvoy | B. Stengel | M. Metzger | E. Hofer | B. Krämer | C. Pattaro | Matthias Olden | D. Toniolo | Felicia Gomez | G. Pistis | D. Taliun | Yong Li | A. Tin | S. Sedaghat | K. Endlich | H. Kramer | M. D. de Borst | S. Stracke | A. d'Adamo | C. Sala | Simon Höllerer | M. Ciullo | D. Ruggiero | R. Sorice | C. Helmer | D. Vuckovic | N. Hutri-Kähönen | S. Rosas | Vladan Mijatovic | Stephen J Hancock | Y. Saba | A. d’Adamo | Peter J. van der Most | W. König | Laura Dengler | Brenda Wjh Penninx | Jie Jin Wang | A. Smith | M. Olden | A. Smith | M. Kähönen | J. Coresh | Mathias Gorski | A. Uitterlinden | Sheila Ulivi | A. Hofman | R. Loos | R. Scott | L. Dengler | F. Hu | R. Schmidt | R. Scott | R. Schmidt | Daniel Taliun | R. Scott

[1]  Xiaofeng Zhu,et al.  The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals , 2016, Nature Genetics.

[2]  Tom R. Gaunt,et al.  LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis , 2016, bioRxiv.

[3]  Aihua Li,et al.  Developmental Origins for Kidney Disease Due to Shroom3 Deficiency. , 2016, Journal of the American Society of Nephrology : JASN.

[4]  Tom R. Gaunt,et al.  Edinburgh Research Explorer Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function , 2022 .

[5]  Yara T. E. Lechanteur,et al.  Nature Genetics Advance Online Publication , 2022 .

[6]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[7]  H. Snieder,et al.  Representativeness of the LifeLines Cohort Study , 2015, PloS one.

[8]  J. Danesh,et al.  A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease , 2016 .

[9]  P. Visscher,et al.  Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index , 2015, Nature Genetics.

[10]  C. Wijmenga,et al.  Cohort Profile Cohort Profile : LifeLines , a three-generation cohort study and biobank , 2015 .

[11]  Christian Gieger,et al.  Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation , 2015, PLoS genetics.

[12]  Gonçalo R. Abecasis,et al.  Minimac2: Faster Genotype Imputation , 2015, Bioinform..

[13]  C. Wijmenga,et al.  Gene expression analysis identifies global gene dosage sensitivity in cancer , 2015, Nature Genetics.

[14]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[15]  N. C. Yeo,et al.  Shroom3 contributes to the maintenance of the glomerular filtration barrier integrity , 2015, Genome research.

[16]  P. Bauer,et al.  PIK3R1 mutations in SHORT syndrome , 2014, Clinical genetics.

[17]  Z. Kutalik,et al.  Common variants in UMOD associate with urinary uromodulin levels: a meta-analysis. , 2014, Journal of the American Society of Nephrology : JASN.

[18]  Kari Stefansson,et al.  Rare mutations associating with serum creatinine and chronic kidney disease. , 2014, Human molecular genetics.

[19]  John P. Overington,et al.  An atlas of genetic influences on human blood metabolites , 2014, Nature Genetics.

[20]  Eric Boerwinkle,et al.  Genetic Determinants Influencing Human Serum Metabolome among African Americans , 2014, PLoS genetics.

[21]  L. Almasy,et al.  Generalization of associations of kidney-related genetic loci to American Indians. , 2014, Clinical journal of the American Society of Nephrology : CJASN.

[22]  Judith A. Blake,et al.  The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse , 2013, Nucleic Acids Res..

[23]  M. Peters,et al.  Systematic identification of trans eQTLs as putative drivers of known disease associations , 2013, Nature Genetics.

[24]  Matteo Trudu,et al.  Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression , 2013, Nature Medicine.

[25]  Kai-Uwe Eckardt,et al.  Evolving importance of kidney disease: from subspecialty to global health burden , 2013, The Lancet.

[26]  Luigi Ferrucci,et al.  Imputation of Variants from the 1000 Genomes Project Modestly Improves Known Associations and Can Identify Low-frequency Variant - Phenotype Associations Undetected by HapMap Based Imputation , 2013, PloS one.

[27]  M. V. van Dijk,et al.  SLC22A2 is associated with tubular creatinine secretion and bias of estimated GFR in renal transplantation. , 2013, Physiological genomics.

[28]  Sylvia Stracke,et al.  Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function. , 2012, Human molecular genetics.

[29]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[30]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[31]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[32]  P. Visscher,et al.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.

[33]  J. Wells,et al.  Body mass index is directly associated with biomarkers of angiogenesis and inflammation in children and adolescents. , 2012, Nutrition.

[34]  Sylvia Stracke,et al.  Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function , 2012, PLoS genetics.

[35]  Christian Fuchsberger,et al.  GWAtoolbox: an R package for fast quality control and handling of genome-wide association studies meta-analysis data , 2012, Bioinform..

[36]  P. Visscher,et al.  Five years of GWAS discovery. , 2012, American journal of human genetics.

[37]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[38]  O. Franco,et al.  The Rotterdam Study: 2012 objectives and design update , 2011, European Journal of Epidemiology.

[39]  M. Nalls,et al.  Genetic Association for Renal Traits among Participants of African Ancestry Reveals New Loci for Renal Function , 2011, PLoS genetics.

[40]  Neil Powe,et al.  Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD , 2011, PLoS genetics.

[41]  Iris M. Heid,et al.  Chronic Kidney Disease: Novel Insights from Genome-Wide Association Studies , 2011, Kidney and Blood Pressure Research.

[42]  Xiaofeng Zhu,et al.  Genetic Background of Patients from a University Medical Center in Manhattan: Implications for Personalized Medicine , 2011, PloS one.

[43]  W. Rathmann,et al.  Cohort profile: the study of health in Pomerania. , 2011, International journal of epidemiology.

[44]  A. Leutenegger,et al.  Genetics of VEGF Serum Variation in Human Isolated Populations of Cilento: Importance of VEGF Polymorphisms , 2011, PloS one.

[45]  F. Hu,et al.  Association of dietary patterns with albuminuria and kidney function decline in older white women: a subgroup analysis from the Nurses' Health Study. , 2011, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[46]  E. C. Park,et al.  Role of Tbx2 in defining the territory of the pronephric nephron , 2011, Development.

[47]  S. Bione,et al.  Association of a variant in the CHRNA5-A3-B4 gene cluster region to heavy smoking in the Italian population , 2011, European Journal of Human Genetics.

[48]  Lincoln Stein,et al.  Reactome: a database of reactions, pathways and biological processes , 2010, Nucleic Acids Res..

[49]  G. Curhan,et al.  Associations of sugar and artificially sweetened soda with albuminuria and kidney function decline in women. , 2011, Clinical journal of the American Society of Nephrology : CJASN.

[50]  J. Duke,et al.  Cohort profile: The Hunter Community Study. , 2010, International journal of epidemiology.

[51]  G. Abecasis,et al.  MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes , 2010, Genetic epidemiology.

[52]  B. Stephan,et al.  Angiogenesis and biomarkers of cardiovascular risk in adults with metabolic syndrome , 2010, Journal of internal medicine.

[53]  Sharon R Grossman,et al.  Integrating common and rare genetic variation in diverse human populations , 2010, Nature.

[54]  Christian Gieger,et al.  Genome-Wide Association Studies of Serum Magnesium, Potassium, and Sodium Concentrations Identify Six Loci Influencing Serum Magnesium Levels , 2010, PLoS genetics.

[55]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[56]  J. Marchini,et al.  Genotype imputation for genome-wide association studies , 2010, Nature Reviews Genetics.

[57]  Peter Kraft,et al.  Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. , 2010, Human molecular genetics.

[58]  Uwe Völker,et al.  New loci associated with kidney function and chronic kidney disease , 2010, Nature Genetics.

[59]  Mark N. Wass,et al.  Genetic loci influencing kidney function and chronic kidney disease , 2010, Nature Genetics.

[60]  C. Meisinger,et al.  Effect of Chronic Kidney Disease and Comorbid Conditions on Health Care Costs: A 10-Year Observational Study in a General Population , 2009, American Journal of Nephrology.

[61]  Ronald R. Ferrucci,et al.  Comparing population structure as inferred from genealogical versus genetic information , 2009, European Journal of Human Genetics.

[62]  Enrico Petretto,et al.  Heritability and Demographic Analyses in the Large Isolated Population of Val Borbera Suggest Advantages in Mapping Complex Traits Genes , 2009, PloS one.

[63]  B. Hendry,et al.  Rho isoforms have distinct and specific functions in the process of epithelial to mesenchymal transition in renal proximal tubular cells. , 2009, Cellular signalling.

[64]  P. Bosco,et al.  Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease , 2009, Nature Genetics.

[65]  Thomas Meitinger,et al.  Genome-wide linkage analysis of serum creatinine in three isolated European populations. , 2009, Kidney international.

[66]  Yurii S. Aulchenko,et al.  Multiple loci associated with indices of renal function and chronic kidney disease , 2009, Nature Genetics.

[67]  R. Mägi,et al.  Genetic Structure of Europeans: A View from the North–East , 2009, PloS one.

[68]  Monique M. B. Breteler,et al.  The Rotterdam Study: 2016 objectives and design update , 2015, European Journal of Epidemiology.

[69]  Frank C Verhulst,et al.  Cohort profile: the Dutch 'TRacking Adolescents' Individual Lives' Survey'; TRAILS. , 2008, International journal of epidemiology.

[70]  P. Gasparini,et al.  Variation in the Bitter‐taste Receptor Gene TAS2R38, and Adiposity in a Genetically Isolated Population in Southern Italy , 2008, Obesity.

[71]  S. Bione,et al.  Variation of hemoglobin levels in normal Italian populations from genetic isolates , 2008, Haematologica.

[72]  K. Akimoto,et al.  Fasudil, a Rho-kinase inhibitor, reverses L-NAME exacerbated severe nephrosclerosis in spontaneously hypertensive rats , 2008, Journal of hypertension.

[73]  Vincent Mooser,et al.  The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome , 2008, BMC cardiovascular disorders.

[74]  D. Hall Measurement Error in Nonlinear Models: A Modern Perspective , 2008 .

[75]  C. Schmid,et al.  Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. , 2008, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[76]  V. Colonna,et al.  Identification and Replication of a Novel Obesity Locus on Chromosome 1q24 in Isolated Populations of Cilento , 2008, Diabetes.

[77]  N. Cook,et al.  Rationale, design, and methodology of the Women's Genome Health Study: a genome-wide association study of more than 25,000 initially healthy american women. , 2008, Clinical chemistry.

[78]  Ronald P. Stolk,et al.  Universal risk factors for multifactorial diseases-LifeLines : a three-generation population-based study , 2008 .

[79]  G. Capasso,et al.  Metabonomics and population studies: age-related amino acids excretion and inferring networks through the study of urine samples in two Italian isolated populations , 2008, Amino Acids.

[80]  A. Hofman,et al.  The Rotterdam Study: objectives and design update , 2007, European Journal of Epidemiology.

[81]  M. Devoto,et al.  Estimates of Genetic and Environmental Contribution to 43 Quantitative Traits Support Sharing of a Homogeneous Environment in an Isolated Population from South Tyrol, Italy , 2007, Human Heredity.

[82]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[83]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[84]  D. Cox,et al.  Evaluation of the SNP tagging approach in an independent population sample—array-based SNP discovery in Sami , 2007, Human Genetics.

[85]  Qiong Yang,et al.  The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. , 2007, American journal of epidemiology.

[86]  V. Gudnason,et al.  Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. , 2007, American journal of epidemiology.

[87]  G. Antoniol,et al.  Campora: A Young Genetic Isolate in South Italy , 2007, Human Heredity.

[88]  Pall I. Olason,et al.  A human phenome-interactome network of protein complexes implicated in genetic disorders , 2007, Nature Biotechnology.

[89]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[90]  Thomas Meitinger,et al.  The genetic study of three population microisolates in South Tyrol (MICROS): study design and epidemiological perspectives , 2007, BMC Medical Genetics.

[91]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[92]  Tom Greene,et al.  Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate , 2006, Annals of Internal Medicine.

[93]  C. Böger,et al.  Effect of ACE and AT-2 inhibitors on mortality and progression to microalbuminuria in a nested case-control study of diabetic nephropathy in diabetes mellitus type 2: results from the GENDIAN study. , 2006, International journal of clinical pharmacology and therapeutics.

[94]  Raymond J. Carroll,et al.  Measurement error in nonlinear models: a modern perspective , 2006 .

[95]  Céline Bellenguez,et al.  New susceptibility locus for hypertension on chromosome 8q by efficient pedigree-breaking in an Italian isolate. , 2006, Human molecular genetics.

[96]  P. Mitchell,et al.  Low hemoglobin, chronic kidney disease, and risk for coronary heart disease-related death: the Blue Mountains Eye Study. , 2005, Journal of the American Society of Nephrology : JASN.

[97]  C. Gieger,et al.  KORA-gen - Resource for Population Genetics, Controls and a Broad Spectrum of Disease Phenotypes , 2005 .

[98]  Graham A. Colditz,et al.  The Nurses' Health Study: lifestyle and health among women , 2005, Nature Reviews Cancer.

[99]  P. Pavlidis,et al.  A Mendelian locus on chromosome 16 determines susceptibility to doxorubicin nephropathy in the mouse. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[100]  U. John,et al.  Study of Health in Pomerania (SHIP): A health examination survey in an east German region: Objectives and design , 2005, Sozial- und Präventivmedizin.

[101]  J. Conboy,et al.  Putative tumor suppressor protein 4.1B is differentially expressed in kidney and brain via alternative promoters and 5' alternative splicing. , 2004, Biochimica et biophysica acta.

[102]  D. Levy,et al.  Genomewide linkage analysis to serum creatinine, GFR, and creatinine clearance in a community-based population: the Framingham Heart Study. , 2004, Journal of the American Society of Nephrology : JASN.

[103]  Daniel Levy,et al.  Predictors of new-onset kidney disease in a community-based population. , 2004, JAMA.

[104]  A. Hofman,et al.  Determinants of disease and disability in the elderly: The Rotterdam elderly study , 1991, European Journal of Epidemiology.

[105]  Å. Johansson,et al.  Linkage disequilibrium between microsatellite markers in the Swedish Sami relative to a worldwide selection of populations , 2004, Human Genetics.

[106]  R. Holman,et al.  Vascular Factors and Risk of Dementia: Design of the Three-City Study and Baseline Characteristics of the Study Population , 2003, Neuroepidemiology.

[107]  D. Altman,et al.  Measuring inconsistency in meta-analyses , 2003, BMJ : British Medical Journal.

[108]  R. Kronmal,et al.  Multi-Ethnic Study of Atherosclerosis: objectives and design. , 2002, American journal of epidemiology.

[109]  Tom Greene,et al.  Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. , 2002, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[110]  G A Colditz,et al.  Physical activity and television watching in relation to risk for type 2 diabetes mellitus in men. , 2001, Archives of internal medicine.

[111]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[112]  K. Roeder,et al.  Genomic Control for Association Studies , 1999, Biometrics.

[113]  A. Levey,et al.  A More Accurate Method To Estimate Glomerular Filtration Rate from Serum Creatinine: A New Prediction Equation , 1999, Annals of Internal Medicine.

[114]  D C Rao,et al.  NHLBI Family Heart Study: objectives and design. , 1996, American journal of epidemiology.

[115]  P. Mitchell,et al.  Visual acuity and the causes of visual loss in Australia. The Blue Mountains Eye Study. , 1996, Ophthalmology.

[116]  J. J. Wang,et al.  Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. , 1995, Ophthalmology.

[117]  F. Fazekas,et al.  Assessment of cerebrovascular risk profiles in healthy persons: definition of research goals and the Austrian Stroke Prevention Study (ASPS). , 1994, Neuroepidemiology.

[118]  J. Manson,et al.  Physical activity and incidence of non-insulin-dependent diabetes mellitus in women , 1991, The Lancet.

[119]  E. Rimm,et al.  Prospective study of alcohol consumption and risk of coronary disease in men , 1991, The Lancet.

[120]  A. Folsom,et al.  The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. , 1989, American journal of epidemiology.

[121]  W. Kannel,et al.  An investigation of coronary heart disease in families. The Framingham offspring study. , 1979, American journal of epidemiology.

[122]  W. Kannel,et al.  The Framingham Offspring Study. Design and preliminary data. , 1975, Preventive medicine.

[123]  M R Thompson,et al.  Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence. , 1975, Biophysical journal.

[124]  A. Berger FUNDAMENTALS OF BIOSTATISTICS , 1969 .