The Sec protein-translocation pathway.

The Sec machinery (or translocase) provides a major pathway of protein translocation from the cytosol across the cytoplasmic membrane in bacteria. The SecA ATPase interacts dynamically with the SecYEG integral membrane components to drive the transmembrane movement of newly synthesized preproteins. This pathway is also used for integration of some membrane proteins and the Sec translocase interacts with other cellular components to achieve its cellular roles. The detailed protein interactions involved in these processes are being actively studied and a structural understanding of the protein-conducting channel has started to emerge.

[1]  Koreaki Ito,et al.  Two Independent Mechanisms Down-regulate the Intrinsic SecA ATPase Activity* , 2000, The Journal of Biological Chemistry.

[2]  Martin Wiedmann,et al.  YidC mediates membrane protein insertion in bacteria , 2000, Nature.

[3]  J. de Gier,et al.  Biogenesis of inner membrane proteins in Escherichia coli , 2001, Molecular microbiology.

[4]  Koreaki Ito,et al.  Translocation, Folding, and Stability of the HflKC Complex with Signal Anchor Topogenic Sequences* , 1998, The Journal of Biological Chemistry.

[5]  T. Rapoport,et al.  Projection structure and oligomeric properties of a bacterial core protein translocase , 2001, The EMBO journal.

[6]  Koreaki Ito,et al.  Dislocation of membrane proteins in FtsH‐mediated proteolysis , 1999, The EMBO journal.

[7]  J. A. Newitt,et al.  The E. coli Signal Recognition Particle Is Required for the Insertion of a Subset of Inner Membrane Proteins , 1997, Cell.

[8]  Y. Fujita,et al.  SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli. , 1993, The EMBO journal.

[9]  K. Bunai,et al.  Enhancing effect of Bacillus subtilis Ffh, a homologue of the SRP54 subunit of the mammalian signal recognition particle, on the binding of SecA to precursors of secretory proteins in vitro. , 1999, Journal of biochemistry.

[10]  K. Nishiyama,et al.  Two SecG molecules present in a single protein translocation machinery are functional even after crosslinking. , 2000, Journal of biochemistry.

[11]  A. Driessen,et al.  Mapping the Sites of Interaction between SecY and SecE by Cysteine Scanning Mutagenesis* , 2001, The Journal of Biological Chemistry.

[12]  B. Berks,et al.  The Tat protein export pathway , 2000, Molecular microbiology.

[13]  V. Ramamurthy,et al.  Nucleotide Binding Activity of SecA Homodimer Is Conformationally Regulated by Temperature and Altered byprlD and azi Mutations* , 2000, The Journal of Biological Chemistry.

[14]  Matthias Müller,et al.  Dissecting the Translocase and Integrase Functions of the Escherichia coli Secyeg Translocon , 2000, The Journal of cell biology.

[15]  A. Driessen SecB, a molecular chaperone with two faces. , 2001, Trends in microbiology.

[16]  H. Bernstein,et al.  SecA Is Required for the Insertion of Inner Membrane Proteins Targeted by the Escherichia coli Signal Recognition Particle* , 1999, The Journal of Biological Chemistry.

[17]  L. Randall,et al.  Export of protein in bacteria , 1984, Microbiological reviews.

[18]  D. Oliver,et al.  Distinct Membrane Binding Properties of N- and C-terminal Domains of Escherichia coli SecA ATPase* , 2000, The Journal of Biological Chemistry.

[19]  T. Silhavy,et al.  PrlA4 prevents the rejection of signal sequence defective preproteins by stabilizing the SecA–SecY interaction during the initiation of translocation , 1998, The EMBO journal.

[20]  B. Wilkinson,et al.  Signal Sequence Recognition in Posttranslational Protein Transport across the Yeast ER Membrane , 1998, Cell.

[21]  J. Deisenhofer,et al.  Conformational stabilization and crystallization of the SecA translocation ATPase from Bacillus subtilis. , 2001, Acta crystallographica. Section D, Biological crystallography.

[22]  R. Schekman,et al.  The engagement of Sec61p in the ER dislocation process. , 1999, Molecular cell.

[23]  W. Wickner,et al.  The protease‐protected 30 kDa domain of SecA is largely inaccessible to the membrane lipid phase , 1997, The EMBO journal.

[24]  A. Driessen,et al.  Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. , 1999, Biochemistry.

[25]  W. Wickner,et al.  Sec‐dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop‐transfer function , 1998, The EMBO journal.

[26]  W. Wickner,et al.  Biogenesis of the Gram-Negative Bacterial Envelope , 1997, Cell.

[27]  E. Vrontou,et al.  A molecular switch in SecA protein couples ATP hydrolysis to protein translocation , 1999, Molecular microbiology.

[28]  S. Hultgren,et al.  Multiple pathways allow protein secretion across the bacterial outer membrane. , 2000, Current opinion in cell biology.

[29]  K. Nishiyama,et al.  Membrane deinsertion of SecA underlying proton motive force‐dependent stimulation of protein translocation , 1999, The EMBO journal.

[30]  T. Silhavy,et al.  Mapping an Interface of SecY (PrlA) and SecE (PrlG) by Using Synthetic Phenotypes and In Vivo Cross-Linking , 1999, Journal of bacteriology.

[31]  H. Bernstein,et al.  A Mutation in the Escherichia coli secY Gene That Produces Distinct Effects on Inner Membrane Protein Insertion and Protein Export* , 1998, The Journal of Biological Chemistry.

[32]  H. Bernstein,et al.  Physiological Basis for Conservation of the Signal Recognition Particle Targeting Pathway in Escherichia coli , 2001, Journal of bacteriology.

[33]  W. Wickner,et al.  Evaluating the oligomeric state of SecYEG in preprotein translocase , 2000, The EMBO journal.

[34]  G. Koningstein,et al.  The Early Interaction of the Outer Membrane Protein PhoE with the Periplasmic Chaperone Skp Occurs at the Cytoplasmic Membrane* , 2001, The Journal of Biological Chemistry.

[35]  J. Beckwith,et al.  Targeting of signal sequenceless proteins for export in Escherichia coli with altered protein translocase. , 1996, The EMBO journal.

[36]  T. Rapoport,et al.  The bacterial SecY/E translocation complex forms channel-like structures similar to those of the eukaryotic Sec61p complex. , 1999, Journal of molecular biology.

[37]  H. Bernstein,et al.  The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  K. Ito,et al.  Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. , 2001, Molecular cell.

[39]  Hirofumi Suzuki,et al.  Coupled structure change of SecA and SecG revealed by the synthetic lethality of the secAcsR11 and ΔsecG::kan double mutant , 1998, Molecular microbiology.

[40]  G von Heijne,et al.  A 30-residue-long "export initiation domain" adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[41]  K. Ito,et al.  Genetic analysis of an essential cytoplasmic domain of Escherichia coli SecY based on resistance to Syd, a SecY-interacting protein , 1998, Molecular and General Genetics MGG.

[42]  G. von Heijne,et al.  YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase , 2000, The EMBO journal.

[43]  A. Driessen,et al.  Escherichia coli translocase: the unravelling of a molecular machine , 2000, Molecular microbiology.

[44]  A. Driessen,et al.  Interaction between SecA and SecYEG in micellar solution and formation of the membrane-inserted state. , 1998, Biochemistry.

[45]  M. Urbanus,et al.  Sec‐dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC , 2001, EMBO reports.

[46]  W. Wickner,et al.  The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits , 1999, The EMBO journal.

[47]  J. Beckwith,et al.  A mutant hunt for defects in membrane protein assembly yields mutations affecting the bacterial signal recognition particle and Sec machinery. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[48]  T. Rapoport,et al.  Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA , 2000, The EMBO journal.

[49]  H. Mori,et al.  In Vitro Analysis of the Stop-transfer Process during Translocation across the Cytoplasmic Membrane of Escherichia coli * , 1997, Journal of Biological Chemistry.

[50]  Koreaki Ito,et al.  Syd, a SecY-interacting Protein, Excludes SecA from the SecYE Complex with an Altered SecY24 Subunit* , 1998, The Journal of Biological Chemistry.

[51]  A. Flower,et al.  SecG Function and Phospholipid Metabolism inEscherichia coli , 2001, Journal of bacteriology.

[52]  A. Engel,et al.  SecYEG assembles into a tetramer to form the active protein translocation channel , 2000, The EMBO journal.

[53]  M. van der Laan,et al.  Reconstitution of Sec‐dependent membrane protein insertion: nascent FtsQ interacts with YidC in a SecYEG‐dependent manner , 2001, EMBO reports.

[54]  Koreaki Ito,et al.  An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[55]  E. Vrontou,et al.  Cross‐talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function , 2001, The EMBO journal.

[56]  K. Rudd,et al.  Revised Translation Start Site for secM Defines an Atypical Signal Peptide That Regulates Escherichia coli secA Expression , 2000, Journal of bacteriology.

[57]  K. Ito,et al.  SecY and SecA interact to allow SecA insertion and protein translocation across the Escherichia coli plasma membrane , 1997, The EMBO journal.

[58]  Koreaki Ito,et al.  Roles of SecG in ATP- and SecA-dependent protein translocation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  T. Homma,et al.  A Mutation in secY That Causes Enhanced SecA Insertion and Impaired Late Functions in Protein Translocation , 2000, Journal of bacteriology.

[60]  Koreaki Ito,et al.  Genetic dissection of SecA: suppressor mutations against the secY205 translocase defect , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[61]  V. Ramamurthy,et al.  Topology of the Integral Membrane Form of Escherichia coli SecA Protein Reveals Multiple Periplasmically Exposed Regions and Modulation by ATP Binding* , 1997, The Journal of Biological Chemistry.

[62]  D. Svergun,et al.  Escherichia coli SecA shape and dimensions , 1998, FEBS letters.

[63]  A. Kuhn,et al.  Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins. , 2000, Annual review of cell and developmental biology.