Influence of Cycling Profile, Depth of Discharge and Temperature on Commercial LFP/C Cell Ageing: Cell Level Analysis with ICA, DVA and OCV Measurements

[1]  K. Friedrich,et al.  Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique , 2020, Beilstein journal of nanotechnology.

[2]  Andreas Jossen,et al.  Capacity Recovery Effect in Commercial LiFePO4 / Graphite Cells , 2020, Journal of The Electrochemical Society.

[3]  D. Sauer,et al.  Post-mortem analysis on LiFePO4|Graphite cells describing the evolution & composition of covering layer on anode and their impact on cell performance , 2017 .

[4]  Andrea Marongiu,et al.  Differential voltage analysis as a tool for analyzing inhomogeneous aging: A case study for LiFePO 4 |Graphite cylindrical cells , 2017 .

[5]  Weige Zhang,et al.  Recognition of battery aging variations for LiFePO 4 batteries in 2nd use applications combining incremental capacity analysis and statistical approaches , 2017 .

[6]  Maitane Berecibar,et al.  State of health battery estimator enabling degradation diagnosis: Model and algorithm description , 2017 .

[7]  W. D. Widanage,et al.  A Comparison between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes within Battery Management Systems , 2017 .

[8]  M. Dubarry,et al.  Operando lithium plating quantification and early detection of a commercial LiFePO 4 cell cycled under dynamic driving schedule , 2017 .

[9]  Yang Gao,et al.  Lithium-ion battery aging mechanisms and life model under different charging stresses , 2017 .

[10]  M. Bruns,et al.  Comparative surface analysis study of the solid electrolyte interphase formation on graphite anodes in lithium‐ion batteries depending on the electrolyte composition , 2017 .

[11]  Dirk Uwe Sauer,et al.  A study on the dependency of the open-circuit voltage on temperature and actual aging state of lithium-ion batteries , 2017 .

[12]  D. Sauer,et al.  Systematic aging of commercial LiFePO4|Graphite cylindrical cells including a theory explaining rise of capacity during aging , 2017 .

[13]  P. Bruce,et al.  Degradation diagnostics for lithium ion cells , 2017 .

[14]  Phl Peter Notten,et al.  Degradation Mechanisms of the Graphite Electrode in C6/LiFePO4 Batteries Unraveled by a Non-Destructive Approach , 2016 .

[15]  Xuning Feng,et al.  State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking , 2016 .

[16]  Franck Guillemard,et al.  Lithium-ion Open Circuit Voltage (OCV) curve modelling and its ageing adjustment , 2016 .

[17]  M. Dubarry,et al.  Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging , 2016 .

[18]  Franck Guillemard,et al.  Lithium-ion Batteries Aging Motinoring Througth Open Circuit Voltage (OCV) Curve Modelling and Adjustment , 2016, ICINCO.

[19]  Arnulf Latz,et al.  Influence of local lithium metal deposition in 3D microstructures on local and global behavior of Lithium-ion batteries , 2016 .

[20]  Dirk Uwe Sauer,et al.  On-board aging estimation using half-cell voltage curves for LiFePO4 cathode-based lithium-ion batteries for EV applications , 2016 .

[21]  Pan Chaofeng,et al.  On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis , 2016 .

[22]  I. Villarreal,et al.  Critical review of state of health estimation methods of Li-ion batteries for real applications , 2016 .

[23]  S. Torai,et al.  State-of-health estimation of LiFePO4/graphite batteries based on a model using differential capacity , 2016 .

[24]  Chenbin Zhang,et al.  An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles , 2016 .

[25]  Simon F. Schuster,et al.  Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression , 2016 .

[26]  Guangzhong Dong,et al.  Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method , 2016 .

[27]  Jae Wan Park,et al.  On-line optimization of battery open circuit voltage for improved state-of-charge and state-of-health estimation , 2015 .

[28]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[29]  Andrea Marongiu,et al.  Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles , 2015 .

[30]  Jianqiu Li,et al.  Online estimation of lithium-ion battery remaining discharge capacity through differential voltage analysis , 2015 .

[31]  M. Wohlfahrt‐Mehrens,et al.  Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study , 2014 .

[32]  M. Dubarry,et al.  Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs , 2014 .

[33]  Michael A. Danzer,et al.  Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries , 2014 .

[34]  Zhe Li,et al.  A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification , 2014 .

[35]  Huei Peng,et al.  An Open-Circuit-Voltage Model of Lithium-Ion Batteries for Effective Incremental Capacity Analysis , 2013 .

[36]  Huei Peng,et al.  On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression , 2013 .

[37]  Xuning Feng,et al.  Using probability density function to evaluate the state of health of lithium-ion batteries , 2013 .

[38]  Matthieu Dubarry,et al.  Synthesize battery degradation modes via a diagnostic and prognostic model , 2012 .

[39]  C. Delacourt,et al.  Calendar aging of a graphite/LiFePO4 cell , 2012 .

[40]  Xiao‐Qing Yang,et al.  Can Vanadium Be Substituted into LiFePO4 , 2011 .

[41]  M. Verbrugge,et al.  Cycle-life model for graphite-LiFePO 4 cells , 2011 .

[42]  M. Dubarry,et al.  Identifying battery aging mechanisms in large format Li ion cells , 2011 .

[43]  Marshall C. Smart,et al.  Effects of Electrolyte Composition on Lithium Plating in Lithium-Ion Cells , 2011 .

[44]  Daniel P. Abraham,et al.  Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing NMC , 2010 .

[45]  Matthieu Dubarry,et al.  Identify capacity fading mechanism in a commercial LiFePO4 cell , 2009 .

[46]  Marnix Wagemaker,et al.  Effect of Surface Energies and Nanoparticle Size Distribution on Open Circuit Voltage of Li-Electrodes , 2009 .

[47]  Petr Novák,et al.  A Dilatometric Study of Lithium Intercalation into Powder-Type Graphite Electrodes , 2008 .

[48]  Lee Chapman,et al.  Transport and climate change: a review , 2007 .

[49]  Vojtech Svoboda,et al.  Capacity and power fading mechanism identification from a commercial cell evaluation , 2007 .

[50]  M. Dubarry,et al.  Incremental Capacity Analysis and Close-to-Equilibrium OCV Measurements to Quantify Capacity Fade in Commercial Rechargeable Lithium Batteries , 2006 .

[51]  I. Bloom,et al.  Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application , 2005 .

[52]  Chester G. Motloch,et al.  Mechanisms of impedance rise in high-power, lithium-ion cells☆ , 2002 .

[53]  Herbert L Case,et al.  An accelerated calendar and cycle life study of Li-ion cells. , 2001 .

[54]  F. E. Little,et al.  Electrochemical impedance study of initial lithium ion intercalation into graphite powders , 2001 .

[55]  O. Tillement,et al.  Theoretical Study of Ordering Effects During Electrochemical Insertion , 1993 .

[56]  A. H. Thompson,et al.  Electrochemical Potential Spectroscopy: A New Electrochemical Measurement , 1979 .

[57]  Joeri Van Mierlo,et al.  A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter , 2018 .

[58]  Ji‐Guang Zhang,et al.  Optimized Operating Range for Large-Format LiFePO4/Graphite Batteries , 2014 .

[59]  Hannah M. Dahn,et al.  User-Friendly Differential Voltage Analysis Freeware for the Analysis of Degradation Mechanisms in Li-Ion Batteries , 2012 .

[60]  D. Sauer,et al.  Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries , 2011 .