On Lagrance-Kuhn-Tucker Mulitipliers for Muliobjective Optimization Problems

Optimallty conditions are established in terms of Lagrange-Fritz-John and Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems by scalarization technique

[1]  J. B. Hiriart-Urruty,et al.  Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces , 1979, Math. Oper. Res..

[2]  M. Minami Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space , 1983 .

[3]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[4]  Jean-Paul Penot,et al.  Differentiability of Relations and Differential Stability of Perturbed Optimization Problems , 1984 .

[5]  C. Swartz,et al.  Pshenichnyi's theorem for vector minimization , 1987 .

[6]  H. W. Corley,et al.  Optimality conditions for maximizations of set-valued functions , 1988 .

[7]  A. Ioffe Approximate subdifferentials and applications 3: the metric theory , 1989 .

[8]  A. Jourani,et al.  Formules d'intersection dans un espace de Banach , 1993 .

[9]  Marc Ciligot Travain On lagrange-kuhn-tucker multipliers for pareto optimization problems , 1994 .

[10]  Derived Sets in Multiobjective Optimization , 1994 .

[11]  Lionel Thibault,et al.  A note on Fréchet and approximate subdifferentials of composite functions , 1994, Bulletin of the Australian Mathematical Society.

[12]  A. Taa,et al.  Necessary and sufficient condiitions for multiobjective optimization problems , 1996 .

[13]  T. Amahroq,et al.  Sufficient conditions of optimality for multiobjective optimization problems with γ-paraconvex data , 1997 .

[14]  Lionel Thibault,et al.  A general metric regularity in asplund banach spaces , 1998 .