Conditions for Optimal Growth of Black Hole Seeds

Supermassive black holes weighing up to ∼109 M⊙ are in place by z ∼ 7, when the age of the universe is ≲1 Gyr. This implies a time crunch for their growth, since such high masses cannot be easily reached in standard accretion scenarios. Here, we explore the physical conditions that would lead to optimal growth wherein stable super-Eddington accretion would be permitted. Our analysis suggests that the preponderance of optimal conditions depends on two key parameters: the black hole mass and the host galaxy central gas density. In the high-efficiency region of this parameter space, a continuous stream of gas can accrete onto the black hole from large to small spatial scales, assuming a global isothermal profile for the host galaxy. Using analytical initial mass functions for black hole seeds, we find an enhanced probability of high-efficiency growth for seeds with initial masses ≳104 M⊙. Our picture suggests that a large population of high-z lower-mass black holes that formed in the low-efficiency region, with low duty cycles and accretion rates, might remain undetectable as quasars, since we predict their bolometric luminosities to be ≲1041 erg s−1. The presence of these sources might be revealed only via gravitational wave detections of their mergers.

[1]  M. Rees,et al.  Rapid Growth of High-Redshift Black Holes , 2005, astro-ph/0506040.

[2]  A. Loeb,et al.  Gravitational Wave Sources from Pop III Stars are Preferentially Located within the Cores of their Host Galaxies , 2017, 1706.09892.

[3]  P. Natarajan,et al.  Feedback Limits to Maximum Seed Masses of Black Holes , 2017, 1701.06565.

[4]  Y. Dubois,et al.  How AGN and SN Feedback Affect Mass Transport and Black Hole Growth in High-redshift Galaxies , 2017, 1701.06172.

[5]  R. Schneider,et al.  Faint progenitors of luminous z ∼ 6 quasars: Why do not we see them? , 2016, 1612.04188.

[6]  M. Volonteri,et al.  Hyperaccreting black holes in galactic nuclei , 2016, 1609.07137.

[7]  J. Ostriker,et al.  Formation of massive black holes in galactic nuclei: runaway tidal encounters , 2016, 1606.01909.

[8]  E. Zackrisson,et al.  Unveiling the First Black Holes With JWST:Multi-wavelength Spectral Predictions , 2016, 1610.05312.

[9]  J. Wise,et al.  BULGE-DRIVEN FUELING OF SEED BLACK HOLES , 2015, 1512.03434.

[10]  Z. Haiman,et al.  Hyper-Eddington accretion flows on to massive black holes , 2015, 1511.02116.

[11]  M. Volonteri,et al.  The growth efficiency of high-redshift black holes , 2015, 1506.04750.

[12]  Xiaohui Fan,et al.  An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30 , 2015, Nature.

[13]  A. Comastri,et al.  Mass without radiation: Heavily obscured AGNs, the X-ray background, and the black hole mass density , 2015, 1501.03620.

[14]  J. Silk,et al.  THE CASE FOR SUPERCRITICAL ACCRETION ONTO MASSIVE BLACK HOLES AT HIGH REDSHIFT , 2014, 1401.3513.

[15]  T. Alexander,et al.  Rapid growth of seed black holes in the early universe by supra-exponential accretion , 2014, Science.

[16]  A. Ferrara,et al.  Initial mass function of intermediate-mass black hole seeds , 2014, 1406.6685.

[17]  P. Madau,et al.  SUPER-CRITICAL GROWTH OF MASSIVE BLACK HOLES FROM STELLAR-MASS SEEDS , 2014, 1402.6995.

[18]  G. Chiaki,et al.  ONE HUNDRED FIRST STARS: PROTOSTELLAR EVOLUTION AND THE FINAL MASSES , 2013, 1308.4456.

[19]  Iap,et al.  The role of relativistic jets in the heaviest and most active supermassive black holes at high redshift , 2013, 1304.1152.

[20]  M. Davies,et al.  SMBH FORMATION VIA GAS ACCRETION IN NUCLEAR STELLAR CLUSTERS , 2013 .

[21]  M. Salvato,et al.  EVOLUTION OF THE QUASAR LUMINOSITY FUNCTION OVER 3 < z < 5 IN THE COSMOS SURVEY FIELD , 2012, 1207.2154.

[22]  M. Brotherton,et al.  Erratum: Updating quasar bolometric luminosity corrections , 2012, 1201.5155.

[23]  Chris L. Fryer,et al.  THE GROWTH OF THE STELLAR SEEDS OF SUPERMASSIVE BLACK HOLES , 2011, 1112.2726.

[24]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[25]  M. Davies,et al.  SUPERMASSIVE BLACK HOLE FORMATION VIA GAS ACCRETION IN NUCLEAR STELLAR CLUSTERS , 2011, 1106.5943.

[26]  Z. Haiman,et al.  Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures Tvir > rsim 104 K , 2009, 0906.4773.

[27]  Bernadetta Devecchi,et al.  FORMATION OF THE FIRST NUCLEAR CLUSTERS AND MASSIVE BLACK HOLES AT HIGH REDSHIFT , 2008, 0810.1057.

[28]  Z. Haiman,et al.  THE ASSEMBLY OF SUPERMASSIVE BLACK HOLES AT HIGH REDSHIFTS , 2008, 0807.4702.

[29]  T. Abel,et al.  ACCRETION ONTO THE FIRST STELLAR-MASS BLACK HOLES , 2007, 0811.0820.

[30]  Cambridge,et al.  Warp diffusion in accretion discs: a numerical investigation , 2007, 0708.1124.

[31]  F. I. Pelupessy,et al.  How Rapidly Do Supermassive Black Hole “Seeds” Grow at Early Times? , 2007, astro-ph/0703773.

[32]  Alberto Sesana,et al.  The imprint of massive black hole formation models on the LISA data stream , 2007, astro-ph/0701556.

[33]  Cambridge,et al.  Supermassive black hole formation during the assembly of pre-galactic discs , 2006, astro-ph/0606159.

[34]  M. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[35]  J. Brinkmann,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars , 2004, astro-ph/0405138.

[36]  A. Loeb,et al.  Formation of the First Supermassive Black Holes , 2002, astro-ph/0212400.

[37]  Z. Haiman,et al.  Second-Generation Objects in the Universe: Radiative Cooling and Collapse of Halos with Virial Temperatures above 104 K , 2001, astro-ph/0108071.

[38]  M. Begelman Can a spherically accreting black hole radiate very near the Eddington limit , 1979 .

[39]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.

[40]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .