Theoretical study on key factors in DNA sequencing with graphene nanopores

Solid-state nanopores, in particular graphene nanopores, are believed to have promising applications in DNA sequencing. Many efforts have been made in this research area, the ultimate goal is to extend the DNA translocation time and to achieve single-base resolution. Unfortunately, several factors in DNA sequencing are still not well understood. In this paper, we report a study on the effects of two main factors, the salt concentration and the bias voltage, on the corresponding ionic current. We propose a theoretical model to explore the relationship between the occupied nanopore area and the current. We demonstrate that the DNA translocation time can be prolonged by decreasing the bias voltage and by properly narrowing the nanopore diameter. We find that the reduction of the blockade current depends on the ratio of the unoccupied nanopore area to the total nanopore area.

[1]  H. Bayley,et al.  Nucleobase recognition at alkaline pH and apparent pKa of single DNA bases immobilised within a biological nanopore. , 2012, Chemical communications.

[2]  Harold P. Erickson,et al.  Force Measurements of the α5β1 Integrin–Fibronectin Interaction , 2003 .

[3]  M. Troll,et al.  Determination of RNA orientation during translocation through a biological nanopore. , 2006, Biophysical journal.

[4]  Grégory Pandraud,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[5]  H. Bayley,et al.  Multiple base-recognition sites in a biological nanopore: two heads are better than one. , 2010, Angewandte Chemie.

[6]  K. Schulten,et al.  Microscopic Kinetics of DNA Translocation through synthetic nanopores. , 2004, Biophysical journal.

[7]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[8]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[9]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[10]  In-Ho Lee,et al.  Nanopore sensor for fast label-free detection of short double-stranded DNAs. , 2007, Biosensors & bioelectronics.

[11]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[12]  H. Bayley,et al.  Urea facilitates the translocation of single-stranded DNA and RNA through the alpha-hemolysin nanopore. , 2010, Biophysical journal.

[13]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[14]  Marc Gershow,et al.  DNA molecules and configurations in a solid-state nanopore microscope , 2003, Nature materials.

[15]  Bo Zhang,et al.  Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. , 2010, Nano letters.

[16]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[17]  J. Joanny,et al.  Fast DNA translocation through a solid-state nanopore. , 2004, Nano letters.

[18]  K. Schulten,et al.  Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel , 2005 .

[19]  K. Schulten,et al.  The electromechanics of DNA in a synthetic nanopore. , 2006, Biophysical journal.

[20]  M. Niederweis,et al.  Nanopore DNA sequencing with MspA , 2010, Proceedings of the National Academy of Sciences.

[21]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[22]  B. Luan,et al.  Base-by-base ratcheting of single stranded DNA through a solid-state nanopore. , 2010, Physical review letters.

[23]  J. Zuo,et al.  DNA Sensing Using Nanocrystalline Surface‐Enhanced Al2O3 Nanopore Sensors , 2010, Advanced functional materials.

[24]  Huajian Gao,et al.  Spontaneous insertion of DNA oligonucleotides into carbon nanotubes , 2003 .

[25]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[26]  D. Deamer Nanopore analysis of nucleic acids bound to exonucleases and polymerases. , 2010, Annual review of biophysics.

[27]  Klaus Schulten,et al.  Computational investigation of DNA detection using graphene nanopores. , 2011, ACS nano.

[28]  Steven J. Gaik,et al.  DNA translocation through an array of kinked nanopores. , 2010, Nature materials.

[29]  Aleksei Aksimentiev,et al.  Slowing down DNA translocation through a nanopore in lithium chloride. , 2012, Nano letters.

[30]  K Schulten,et al.  Nanoelectromechanics of methylated DNA in a synthetic nanopore. , 2009, Biophysical journal.

[31]  Tao Wu,et al.  Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces. , 2008, Biomaterials.

[32]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[33]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[34]  David Stoddart,et al.  Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore , 2009, Proceedings of the National Academy of Sciences.

[35]  Ruoshan Wei,et al.  Stochastic sensing of proteins with receptor-modified solid-state nanopores. , 2012, Nature nanotechnology.

[36]  G. Tonini,et al.  DNA-functionalized solid state nanopore for biosensing , 2010, Nanotechnology.

[37]  D. McNabb,et al.  Slowing DNA translocation in a solid-state nanopore. , 2005, Nano letters.

[38]  Gustavo Stolovitzky,et al.  Slowing and controlling the translocation of DNA in a solid-state nanopore. , 2012, Nanoscale.

[39]  Gustavo Stolovitzky,et al.  Characterizing and controlling the motion of ssDNA in a solid-state nanopore. , 2011, Biophysical journal.

[40]  Marija Drndic,et al.  Electron beam nanosculpting of suspended graphene sheets , 2008 .

[41]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[42]  Huajian Gao,et al.  SIMULATION OF DNA-NANOTUBE INTERACTIONS , 2004 .

[43]  Jacob J. Schmidt,et al.  Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore. , 2009, ACS nano.

[44]  Peter L. Freddolino,et al.  The role of molecular modeling in bionanotechnology , 2006 .