Potential applications of hierarchical branching nanowires in solar energy conversion

Nanoscience and nanotechnology can provide many benefits to photovoltaic and photoelectrochemical applications by combining novel nanoscale properties with processability and low cost. Taking advantage of high quality, high efficiency, yet low cost nanomaterials could potentially provide the new and transformative approaches to enable the proposed generation-III solar technologies. Nanowires are interesting because they have a long axis to absorb incident sunlight yet with a short radial distance to separate the photogenerated carriers. In this perspective, we further suggest that more “complex” nanostructures, both in the form of hierarchically branching/hyperbranching nanowire structures and in the form of multi-component nanowire heterostructures of diverse materials, are potentially even more interesting for solar energy harvesting and conversion. The common bottom-up synthetic techniques to induce branching in nanowires to form hierarchical nanowire structures are reviewed. Several potential strategies for their incorporation into solar conversion devices are discussed and some fundamental issues and future directions are identified.

[1]  R. Powell,et al.  The structure of zinc oxide nuclei , 1963 .

[2]  J. Rand,et al.  Silicon Nanowire Solar Cells , 2007 .

[3]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[4]  Thomas Surek,et al.  Crystal growth and materials research in photovoltaics: progress and challenges , 2005 .

[5]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[6]  Wu Wang,et al.  High-Performance Nanowire Electronics and Photonics on Glass and Plastic Substrates , 2003 .

[7]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[8]  Mehrdad N. Ghasemi-Nejhad,et al.  Multifunctional brushes made from carbon nanotubes , 2005, Nature materials.

[9]  M. Kaiser,et al.  Epitaxial growth of InP nanowires on germanium , 2004, Nature materials.

[10]  Nathan S Lewis,et al.  Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. , 2005, Inorganic chemistry.

[11]  E. Bakkers,et al.  Growth kinetics of heterostructured GaP-GaAs nanowires. , 2006, Journal of the American Chemical Society.

[12]  Lars Samuelson,et al.  Position-controlled interconnected InAs nanowire networks. , 2006, Nano letters.

[13]  L. Wernersson,et al.  Metalorganic vapor phase epitaxy-grown GaP/GaAs/GaP and GaAsP/GaAs/GaAsP n-type resonant tunnelling diodes , 2002 .

[14]  E. Lundgren,et al.  Improving InAs nanotree growth with composition-controlled Au–In nanoparticles , 2006 .

[15]  H. Xu,et al.  Electrical properties of self-assembled branched InAs nanowire junctions. , 2008, Nano letters.

[16]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[17]  Fang Qian,et al.  Rational growth of branched and hyperbranched nanowire structures , 2004 .

[18]  Song Jin,et al.  Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. , 2007, Nano letters.

[19]  Jörg Ackermann,et al.  Highly Efficient Hybrid Solar Cells Based on an Octithiophene–GaAs Heterojunction , 2005 .

[20]  P. Meakin The growth of rough surfaces and interfaces , 1993 .

[21]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[22]  Yi Cui,et al.  Formation of chiral branched nanowires by the Eshelby Twist. , 2008, Nature nanotechnology.

[23]  Joshua E. Goldberger,et al.  Synthesis and Thermoelectrical Characterization of Lead Chalcogenide Nanowires , 2007 .

[24]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[25]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[26]  Monica Lira-Cantu,et al.  Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review , 2009 .

[27]  A. Nozik Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. , 2001, Annual review of physical chemistry.

[28]  Michael Grätzel,et al.  Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting , 2009 .

[29]  Song Jin,et al.  Epitaxial growth of hierarchical PbS nanowires , 2009 .

[30]  A. Dong,et al.  Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires. , 2007, Journal of the American Chemical Society.

[31]  Krishnan Rajeshwar,et al.  Hydrogen generation at irradiated oxide semiconductor–solution interfaces , 2007 .

[32]  Peter J. Pauzauskie,et al.  Crystallographic alignment of high-density gallium nitride nanowire arrays , 2004, Nature materials.

[33]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[34]  Song Jin,et al.  Dislocation-Driven Nanowire Growth and Eshelby Twist , 2008, Science.

[35]  Ilan Gur,et al.  Hybrid Organic-Nanocrystal Solar Cells , 2005 .

[36]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[37]  Song Jin,et al.  Synthesis and applications of metal silicide nanowires , 2010 .

[38]  R. Hamers Formation and characterization of organic monolayers on semiconductor surfaces. , 2008, Annual review of analytical chemistry.

[39]  Andrew L. Schmitt,et al.  Higher manganese silicide nanowires of Nowotny chimney ladder phase. , 2008, Journal of the American Chemical Society.

[40]  M. L. Fuller Twinning in Zinc Oxide , 1944 .

[41]  Margit Zacharias,et al.  Semiconductor nanowires: from self-organization to patterned growth. , 2006, Small.

[42]  Song Jin,et al.  Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor. , 2006, The journal of physical chemistry. B.

[43]  Atul K. Jain,et al.  Energy implications of future stabilization of atmospheric CO2 content , 1998, Nature.

[44]  Nathan S Lewis,et al.  High aspect ratio silicon wire array photoelectrochemical cells. , 2007, Journal of the American Chemical Society.

[45]  T. C. Mcgill,et al.  Lattice match: An application to heteroepitaxy , 1984 .

[46]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[47]  Andrew L. Schmitt,et al.  Single-Crystal Semiconducting Chromium Disilicide Nanowires Synthesized via Chemical Vapor Transport , 2007 .

[48]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[49]  Song Jin,et al.  Synthesis and properties of single-crystal FeSi nanowires. , 2006, Nano letters.

[50]  Zhifeng Ren,et al.  Hierarchical ZnO Nanostructures , 2002 .

[51]  Nathan S Lewis,et al.  Photovoltaic measurements in single-nanowire silicon solar cells. , 2008, Nano letters.

[52]  K. Hull,et al.  Induced Branching in Confined PbSe Nanowires , 2005 .

[53]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[54]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[55]  Margit Zacharias,et al.  Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals , 2004 .

[56]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[57]  L. Lauhon,et al.  Dendritic Nanowire Growth Mediated by a Self‐Assembled Catalyst , 2005 .

[58]  Lars Samuelson,et al.  Epitaxial III-V nanowires on silicon , 2004 .

[59]  Yiying Wu,et al.  Ammonia-Evaporation-Induced Synthetic Method for Metal (Cu, Zn, Cd, Ni) Hydroxide/Oxide Nanostructures , 2008 .

[60]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[61]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[62]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[63]  Mark G. Blamire,et al.  Epitaxial Growth of Vertically Aligned and Branched Single‐Crystalline Tin‐Doped Indium Oxide Nanowire Arrays , 2006 .

[64]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[65]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[66]  Lars Samuelson,et al.  Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events , 2004, Nature materials.

[67]  V. Protasenko,et al.  Solution-Based Straight and Branched CdTe Nanowires , 2004 .

[68]  W. Zhou,et al.  Self-catalytic branch growth of SnO2 nanowire junctions , 2004 .

[69]  L. Lauhon,et al.  Alternative catalysts for VSS growth of silicon and germanium nanowires , 2009 .

[70]  S. Noor Mohammad,et al.  Growth of GaN nanowires by direct reaction of Ga with NH3 , 2001 .

[71]  R. Agarwal,et al.  Heterointerfaces in semiconductor nanowires. , 2008, Small.

[72]  A Paul Alivisatos,et al.  Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. , 2008, Nano letters.

[73]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[74]  A. Gawlik,et al.  Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. , 2009, Nano letters.

[75]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[76]  A Paul Alivisatos,et al.  Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. , 2007, Nano letters.

[77]  P. Yang,et al.  Nanowire-based all-oxide solar cells. , 2009, Journal of the American Chemical Society.

[78]  Yeonwoong Jung,et al.  Synthesis and structural characterization of single-crystalline branched nanowire heterostructures. , 2007, Nano letters.

[79]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[80]  Yi Cui,et al.  Hyperbranched lead selenide nanowire networks. , 2007, Nano letters.

[81]  Ling-Dong Sun,et al.  Hierarchical assembly of SnO2 nanorod arrays on alpha-Fe2O3 nanotubes: a case of interfacial lattice compatibility. , 2005, Journal of the American Chemical Society.

[82]  Yi Cui,et al.  Controlled Growth and Structures of Molecular-Scale Silicon Nanowires , 2004 .

[83]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[84]  Dunwei Wang,et al.  Spontaneous growth of highly conductive two-dimensional single-crystalline TiSi2 nanonets. , 2008, Angewandte Chemie.

[85]  Charles M Lieber,et al.  Semiconductor nanowire heterostructures , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[86]  E. Aydil,et al.  Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells , 2006 .

[87]  Andrew L. Schmitt,et al.  Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. , 2007, Nano letters.

[88]  Arthur J. Nozik,et al.  Physical Chemistry of Semiconductor−Liquid Interfaces , 1996 .

[89]  Kok-Keong Lew,et al.  Silicon nanowire array photelectrochemical cells. , 2007, Journal of the American Chemical Society.

[90]  Nathan S. Lewis,et al.  Flexible Polymer‐Embedded Si Wire Arrays , 2009 .

[91]  N. Greenham,et al.  Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers , 2003 .