The homology representations of the k-equal partition lattice

We determine the character of the action of the symmetric group on the homology of the induced subposet of the lattice of partitions of the set {1, 2, ... , nr} obtained by restricting block sizes to the set {1, k, k + 1, . }. A plethystic formula for the generating function of the Frobenius characteristic of the representation is given. We combine techniques from the theory of nonpure shellability, recently developed by Bj6rner and Wachs, with symmetric function techniques, developed by Sundaram, for determining representations on the homology of subposets of the partition lattice.

[1]  Sheila Sundaram,et al.  Applications of the Hopf trace formula to computing homology representations , 1994 .

[2]  Egbert Brieskorn Sur les groupes de tresses , 1972 .

[3]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[4]  Anders Björner,et al.  On the homology of geometric lattices , 1982 .

[5]  S. Sundaram,et al.  The Homology Representations of the Symmetric Group on Cohen-Macaulay Subposets of the Partition Lattice , 1994 .

[6]  Michelle L. Wachs,et al.  On the (co)homology of the partition lattice and the free Lie algebra , 1998, Discret. Math..

[7]  Hélène Barcelo,et al.  On the action of the symmetric group on the Free Lie Algebra and the partition lattice , 1990, J. Comb. Theory, Ser. A.

[8]  P. Hanlon,et al.  The fixed-point partition lattices , 1981 .

[9]  A. Björner Shellable and Cohen-Macaulay partially ordered sets , 1980 .

[10]  P. Orlik,et al.  Combinatorics and topology of complements of hyperplanes , 1980 .

[11]  P. Hanlon The generalized Dowling lattices , 1991 .

[12]  Volkmar Welker,et al.  Group actions on arrangements of linear subspaces and applications to configuration spaces , 1997 .

[13]  Vladimir I. Arnold,et al.  The cohomology ring of the colored braid group , 1969 .

[14]  Volkmar Welker,et al.  The Homology of "k-Equal" Manifolds and Related Partition Lattices , 1995 .

[15]  Louis Solomon,et al.  On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes , 1986 .

[16]  Louis Solomon,et al.  A decomposition of the group algebra of a finite Coxeter group , 1968 .

[17]  Michelle L. Wachs,et al.  Shellable nonpure complexes and posets. II , 1996 .

[18]  Michelle L. Wachs A Basis for the Homology of thed-Divisible Partition Lattice , 1996 .

[19]  László Lovász,et al.  Linear decision trees: volume estimates and topological bounds , 1992, STOC '92.

[20]  Vladimir I. Arnold The cohomology ring of the colored braid group , 1969 .

[21]  M. Wachs SHELLABLE NONPURE COMPLEXES AND POSETS. I , 1996 .

[22]  A. Joyal Foncteurs analytiques et espèces de structures , 1986 .

[23]  Richard P. Stanley,et al.  Some Aspects of Groups Acting on Finite Posets , 1982, J. Comb. Theory, Ser. A.

[24]  Kenneth Baclawski,et al.  Whitney Numbers of Geometric Lattices , 1975 .