Continuous Additive Algebras and Injective Simulations of Synchronization Trees

The (in)equational properties of t he least fixed point operation on ( -)continuous functions on ( -)complete partially ordered sets are captured by the axioms of (ordered) ite ration algebras, or iteration theories. We show that the inequational laws of the sum operation in conjunction w ith the least fixed point operation in continuous additive algebras have a finite axiomatization over the inequati ons of ordered iteration alg ebras. As a byproduct of this relative axiomatizability result, we obtain complete infinite in quational and finite impli cational axiomatizations. Along the way of proving these results, we give a concre te description of the free algebras in the corresponding variety of ordered iteration algebras. This description use s injective simulations of regular synchronization trees. Thus, our axioms are also sound and complete for the inject ve simulation (resource boundesimulation) of (regular) processes.

[1]  Robin Milner,et al.  A Complete Inference System for a Class of Regular Behaviours , 1984, J. Comput. Syst. Sci..

[2]  Luca Aceto,et al.  A menagerie of non-finitely based process semantics over BPA* – from ready simulation to completed traces , 1998, Mathematical Structures in Computer Science.

[3]  Zoltán Ésik,et al.  Independence of the Equational Axioms for Iteration Theories , 1988, J. Comput. Syst. Sci..

[4]  Peter Sewell,et al.  Nonaxiomatisability of Equivalences over Finite State Processes , 1997, Ann. Pure Appl. Log..

[5]  Desmond Fearnley-Sander,et al.  Universal Algebra , 1982 .

[6]  Werner Damm Higher type program schemes and their tree languages , 1977, Theoretical Computer Science.

[7]  Daniel Krob,et al.  Complete Systems of B-Rational Identities , 1991, Theor. Comput. Sci..

[8]  Arto Salomaa,et al.  Two Complete Axiom Systems for the Algebra of Regular Events , 1966, JACM.

[9]  Claus Brabrand,et al.  Growing languages with metamorphic syntax macros , 2000, PEPM '02.

[10]  Glynn Winskel,et al.  Language, Semantics, and Methods for Cryptographic Protocols , 2000 .

[11]  Zoltán Ésik,et al.  Group Axioms for Iteration , 1999, Inf. Comput..

[12]  Hans Bekic,et al.  Definable Operation in General Algebras, and the Theory of Automata and Flowcharts , 1984, Programming Languages and Their Definition.

[13]  Igor Walukiewicz,et al.  Completeness of Kozen's Axiomatisation of the Propositional µ-Calculus , 2000, Inf. Comput..

[14]  Luca Aceto,et al.  2-Nested Simulation Is Not Finitely Equationally Axiomatizable , 2000, STACS.

[15]  Zoltán Ésik Axiomatizing the Least Fixed Point Operation and Binary Supremum , 2000, CSL.

[16]  Daniel Krob Monoides et semi-anneaux complets , 1987 .

[17]  Rocco De Nicola,et al.  Tree Morphisms and Bisimulations , 1998, Electron. Notes Theor. Comput. Sci..

[18]  Zoltán Ésik,et al.  Iteration Theories of Synchronization Trees , 1993, Inf. Comput..

[19]  J. Conway Regular algebra and finite machines , 1971 .

[20]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[21]  Thomas Hune,et al.  Modeling a Language for Embedded Systems in Timed Automata , 2000 .

[22]  Rocco De Nicola,et al.  A finite axiomatization of nondeterministic regular expressions , 1999, RAIRO Theor. Informatics Appl..

[23]  Jerzy Tiuryn Fixed-Points and Algebras with Infinitely Long Expressions, II , 1977, FCT.

[24]  Rajeev Alur,et al.  Heuristics for Hierarchical Partitioning with Application to Model Checking , 2000, CHARME.

[25]  Anders B. Sandholm,et al.  Using Automata in Control Synthesis. A Case Study , 2000 .

[26]  Zoltán Ésik,et al.  Completeness of Park Induction , 1997, Theor. Comput. Sci..

[27]  A. Labellabs,et al.  Equational properties of iteration in algebraically complete categories , 2003 .

[28]  Joseph A. Goguen,et al.  Initial Algebra Semantics and Continuous Algebras , 1977, J. ACM.

[29]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[30]  STEPHrN L. BLOOM,et al.  Varieties of Ordered Algebras , 1976, J. Comput. Syst. Sci..

[31]  Hans Zantema,et al.  Basic Process Algebra with Iteration: Completeness of its Equational Axioms , 1993, Comput. J..

[32]  Vinodchandran Variyam A Note on NP \ coNP=poly , 2000 .

[33]  Damian Niwinski On Fixed-Point Clones (Extended Abstract) , 1986, ICALP.

[34]  Luca Aceto,et al.  Characteristic formulae for timed automata , 2000, RAIRO Theor. Informatics Appl..

[35]  Michael A. Arbib,et al.  Algebraic Approaches to Program Semantics , 1986, Texts and Monographs in Computer Science.

[36]  Jean H. Gallier n-Rational Algebras I. Basic Properties and Free Algebras , 1984, SIAM J. Comput..

[37]  Klaus Indermark Complexity of Infinite Trees , 1983, ICALP.

[38]  Zoltán Ésik,et al.  The Equational Logic of Fixed Points (Tutorial) , 1997, Theor. Comput. Sci..

[39]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[40]  Luca Aceto,et al.  On a Question of A. Salomaa: The Equational Theory of Regular Expressions Over a Singleton Alphabet is not Finitely Based , 1998, Theor. Comput. Sci..

[41]  Z. Ésik Continuous Additive Algebras and Injective Simulations of Synchronization Trees , 2000 .

[42]  Bruno Courcelle,et al.  Algorithmes d'equivalence et de reduction a des expressions minimales dans une classe d'equations recursives simples , 1974, ICALP.

[43]  Jerzy Tiuryn,et al.  Fixed Points in Free Process Algebras, Part I , 1989, Theor. Comput. Sci..

[44]  Irène Guessarian,et al.  Algebraic semantics , 1981, Lecture Notes in Computer Science.

[45]  Bruno Courcelle,et al.  Equivalences and Transformations of Regular Systems-Applications to Recursive Program Schemes and Grammars , 1986, Theor. Comput. Sci..

[46]  Rocco De Nicola,et al.  Models of Nondeterministic Regular Expressions , 1999, J. Comput. Syst. Sci..

[47]  Zoltán Ésik,et al.  A Note on Equations for Commutative Regular Languages , 1999, Inf. Process. Lett..

[48]  C. C. Elgot Monadic Computation And Iterative Algebraic Theories , 1982 .

[49]  José L. Balcázar,et al.  Deciding Bisimilarity is P-Complete , 1992, Formal Aspects Comput..

[50]  Jan A. Bergstra,et al.  Decidability of Bisimulation Equivalence for Processes Generating Context-Free Languages , 1987, PARLE.

[51]  Jirí Srba Complexity of Weak Bisimilarity and Regularity for BPA and BPP , 2000, EXPRESS.

[52]  Dexter Kozen A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..