DeepRT: deep learning for peptide retention time prediction in proteomics
暂无分享,去创建一个
Jun Ye | Fan Mo | Chang Yu | Zhiyong Zhu | Bo Wen | Siqi Liu | Jiarui Yang | Ruo Zhou | Shaohang Xu | Chunwei Ma | Jianguo Pei
[1] Yoshua Bengio,et al. Deep Sparse Rectifier Neural Networks , 2011, AISTATS.
[2] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[3] Jürgen Schmidhuber,et al. Long Short-Term Memory , 1997, Neural Computation.
[4] Lukas Käll,et al. Training, selection, and robust calibration of retention time models for targeted proteomics. , 2010, Journal of proteome research.
[5] Razvan Pascanu,et al. Theano: new features and speed improvements , 2012, ArXiv.
[6] Zachary Chase Lipton. A Critical Review of Recurrent Neural Networks for Sequence Learning , 2015, ArXiv.
[7] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[8] Nitish Srivastava,et al. Improving Neural Networks with Dropout , 2013 .
[9] Matthew The,et al. Uncertainty estimation of predictions of peptides' chromatographic retention times in shotgun proteomics , 2016, Bioinform..
[10] Honglak Lee,et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.
[11] O. Krokhin,et al. Sequence-specific retention calculator. Algorithm for peptide retention prediction in ion-pair RP-HPLC: application to 300- and 100-A pore size C18 sorbents. , 2006, Analytical chemistry.
[12] Lukas Käll,et al. Peptide retention time prediction. , 2017, Mass spectrometry reviews.