The Matlab Radial Basis Function Toolbox
暂无分享,去创建一个
[1] S. Sarra,et al. Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations , 2009 .
[2] Tien-Tsin Wong,et al. Sampling with Hammersley and Halton Points , 1997, J. Graphics, GPU, & Game Tools.
[3] Martin D. Buhmann,et al. Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.
[4] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[5] R. E. Carlson,et al. Improved accuracy of multiquadric interpolation using variable shape parameters , 1992 .
[6] Elisabeth Larsson,et al. Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..
[7] E. Kansa. MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .
[8] Samuel Cogar,et al. An examination of evaluation algorithms for the RBF method , 2017 .
[9] George Casella,et al. The Early Use of Matrix Diagonal Increments in Statistical Problems , 1989, SIAM Rev..
[10] Elisabeth Larsson,et al. Stable computations with Gaussian radial basis functions in 2-D , 2009 .
[11] Scott A. Sarra,et al. A random variable shape parameter strategy for radial basis function approximation methods , 2009 .
[12] Michael J. McCourt,et al. Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..
[13] S. Sarra,et al. Regularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiation , 2014 .
[14] Scott A. Sarra,et al. Radial basis function approximation methods with extended precision floating point arithmetic , 2011 .
[15] G. Fasshauer,et al. STABLE EVALUATION OF GAUSSIAN RBF INTERPOLANTS , 2011 .
[16] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[17] A. Cheng,et al. Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method , 2007 .
[18] S. R. Searle,et al. On Deriving the Inverse of a Sum of Matrices , 1981 .
[19] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .