A PRIORI ERROR ANALYSIS OF STOCHASTIC GALERKIN PROJECTION SCHEMES FOR RANDOMLY PARAMETRIZED ORDINARY DIFFERENTIAL EQUATIONS

Generalized polynomial chaos (gPC) based stochastic Galerkin methods are widely used to solve randomly parametrized ordinary differential equations (RODEs). These RODEs are parametrized in terms of a finite number of independent and identically distributed second-order random variables. In this paper, we derive a priori error estimates for stochastic Galerkin approximations of RODEs accounting for the temporal and stochastic discretization errors. Under appropriate stochastic regularity assumptions, convergence rates are provided for first-order linear RODE systems and first-order nonlinear scalar RODEs. We also consider the case of second-order linear RODE systems that are routinely encountered in stochastic structural dynamics applications. Finally, some insights into the long-time behavior of gPC schemes are provided for a model problem drawing on the present analysis.

[1]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[2]  Steven A. Orszag,et al.  Dynamical Properties of Truncated Wiener‐Hermite Expansions , 1967 .

[3]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[4]  A. Quarteroni,et al.  Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .

[5]  I. N. Sneddon,et al.  The Solution of Ordinary Differential Equations , 1987 .

[6]  Christine Bernardi,et al.  Properties of some weighted Sobolev spaces and application to spectral approximations , 1989 .

[7]  Y. Maday,et al.  Analysis of spectral projectors in one-dimensional domains , 1990 .

[8]  Ben-yu Guo,et al.  Error estimation of Hermite spectral method for nonlinear partial differential equations , 1999, Math. Comput..

[9]  Jie Shen,et al.  Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval , 2000, Numerische Mathematik.

[10]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[11]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[12]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  Ben-yu Guo,et al.  Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.

[14]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[15]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[16]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[17]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[18]  G. Karniadakis,et al.  Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .

[19]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[20]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[21]  P. Rentrop,et al.  Polynomial chaos for the approximation of uncertainties: Chances and limits , 2008, European Journal of Applied Mathematics.

[22]  A. Nouy Generalized spectral decomposition method for solving stochastic finite element equations : Invariant subspace problem and dedicated algorithms , 2008 .

[23]  Anthony Nouy,et al.  Generalized spectral decomposition for stochastic nonlinear problems , 2009, J. Comput. Phys..

[24]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[25]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[26]  George E. Karniadakis,et al.  Time-dependent generalized polynomial chaos , 2010, J. Comput. Phys..

[27]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[28]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[29]  Fabio Nobile,et al.  Computers and Mathematics with Applications Convergence of Quasi-optimal Stochastic Galerkin Methods for a Class of Pdes with Random Coefficients , 2022 .

[30]  Fabio Nobile,et al.  Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points , 2015, J. Multivar. Anal..