A PRIORI ERROR ANALYSIS OF STOCHASTIC GALERKIN PROJECTION SCHEMES FOR RANDOMLY PARAMETRIZED ORDINARY DIFFERENTIAL EQUATIONS
暂无分享,去创建一个
[1] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[2] Steven A. Orszag,et al. Dynamical Properties of Truncated Wiener‐Hermite Expansions , 1967 .
[3] J. M. Watt. Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .
[4] A. Quarteroni,et al. Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .
[5] I. N. Sneddon,et al. The Solution of Ordinary Differential Equations , 1987 .
[6] Christine Bernardi,et al. Properties of some weighted Sobolev spaces and application to spectral approximations , 1989 .
[7] Y. Maday,et al. Analysis of spectral projectors in one-dimensional domains , 1990 .
[8] Ben-yu Guo,et al. Error estimation of Hermite spectral method for nonlinear partial differential equations , 1999, Math. Comput..
[9] Jie Shen,et al. Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval , 2000, Numerische Mathematik.
[10] D. Xiu,et al. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .
[11] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[12] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[13] Ben-yu Guo,et al. Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.
[14] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[15] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[16] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[17] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[18] G. Karniadakis,et al. Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .
[19] A. Nouy. A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .
[20] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[21] P. Rentrop,et al. Polynomial chaos for the approximation of uncertainties: Chances and limits , 2008, European Journal of Applied Mathematics.
[22] A. Nouy. Generalized spectral decomposition method for solving stochastic finite element equations : Invariant subspace problem and dedicated algorithms , 2008 .
[23] Anthony Nouy,et al. Generalized spectral decomposition for stochastic nonlinear problems , 2009, J. Comput. Phys..
[24] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[25] Omar M. Knio,et al. Spectral Methods for Uncertainty Quantification , 2010 .
[26] George E. Karniadakis,et al. Time-dependent generalized polynomial chaos , 2010, J. Comput. Phys..
[27] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[28] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[29] Fabio Nobile,et al. Computers and Mathematics with Applications Convergence of Quasi-optimal Stochastic Galerkin Methods for a Class of Pdes with Random Coefficients , 2022 .
[30] Fabio Nobile,et al. Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points , 2015, J. Multivar. Anal..