Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis

[1]  Ping Yang,et al.  Silencing of cZNF292 circular RNA suppresses human glioma tube formation via the Wnt/β-catenin signaling pathway , 2016, Oncotarget.

[2]  P. Pandolfi,et al.  Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations , 2016, Cell.

[3]  Yan Li,et al.  Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs , 2016, Nature Communications.

[4]  Xubao Liu,et al.  Circular RNAs: a new frontier in the study of human diseases , 2016, Journal of Medical Genetics.

[5]  Weining Yang,et al.  Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2 , 2016, Nucleic acids research.

[6]  Z. Yakhini,et al.  Systematic discovery of cap-independent translation sequences in human and viral genomes , 2016, Science.

[7]  Minoru Yoshida,et al.  Rolling Circle Translation of Circular RNA in Living Human Cells , 2015, Scientific Reports.

[8]  Olivier Elemento,et al.  5′ UTR m6A Promotes Cap-Independent Translation , 2015, Cell.

[9]  S. Cherry,et al.  Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins , 2015, Genes & development.

[10]  Shu-Bing Qian,et al.  Dynamic m6A mRNA methylation directs translational control of heat shock response , 2015, Nature.

[11]  Petar Glažar,et al.  Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. , 2015, Molecular cell.

[12]  Andreas W. Schreiber,et al.  The RNA Binding Protein Quaking Regulates Formation of circRNAs , 2015, Cell.

[13]  E. Schuman,et al.  Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity , 2015, Nature Neuroscience.

[14]  Yang Wang,et al.  Efficient backsplicing produces translatable circular mRNAs , 2015, RNA.

[15]  Tim Schneider,et al.  Exon circularization requires canonical splice signals. , 2015, Cell reports.

[16]  Chuan He,et al.  FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis , 2014, Cell Research.

[17]  N. Rajewsky,et al.  circRNA biogenesis competes with pre-mRNA splicing. , 2014, Molecular cell.

[18]  N. Sharpless,et al.  Detecting and characterizing circular RNAs , 2014, Nature Biotechnology.

[19]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[20]  Alessandro Fatica,et al.  A Feedforward Regulatory Loop between HuR and the Long Noncoding RNA linc-MD1 Controls Early Phases of Myogenesis , 2014, Molecular cell.

[21]  Ian Chambers,et al.  A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal , 2013, The EMBO journal.

[22]  Thomas Preiss,et al.  Circular RNAs: splicing's enigma variations , 2013, The EMBO journal.

[23]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[24]  J. Kjems,et al.  Natural RNA circles function as efficient microRNA sponges , 2013, Nature.

[25]  Michael K. Slevin,et al.  Circular RNAs are abundant, conserved, and associated with ALU repeats. , 2013, RNA.

[26]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[27]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[28]  E. Bertini,et al.  Exon 45 skipping through U1-snRNA antisense molecules recovers the Dys-nNOS pathway and muscle differentiation in human DMD myoblasts. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[29]  T. Aune,et al.  Reciprocal regulation of Rag expression in thymocytes by the zinc-finger proteins, Zfp608 and Zfp609 , 2012, Genes and Immunity.

[30]  M. Kupiec,et al.  Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq , 2012, Nature.

[31]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[32]  Charles Gawad,et al.  Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types , 2012, PloS one.

[33]  Jørgen Kjems,et al.  miRNA‐dependent gene silencing involving Ago2‐mediated cleavage of a circular antisense RNA , 2011, The EMBO journal.

[34]  A. Komar,et al.  Cellular IRES-mediated translation , 2011, Cell cycle.

[35]  S. Salzberg,et al.  Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms , 2010, Nature Biotechnology.

[36]  S. Salzberg,et al.  TopHat: discovering splice junctions with RNA-Seq , 2009, Bioinform..

[37]  H. Wichterle,et al.  Differentiation of mouse embryonic stem cells to spinal motor neurons. , 2008, Current protocols in stem cell biology.

[38]  M. Zavolan,et al.  Strand-specific 5'-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. , 2007, RNA.

[39]  Stuart H. Orkin,et al.  A protein interaction network for pluripotency of embryonic stem cells , 2006, Nature.

[40]  L. Lim,et al.  Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. , 2006, RNA.

[41]  Michael Q. Zhang,et al.  Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing , 2006, Nucleic acids research.

[42]  N. Sonenberg,et al.  Translational control in stress and apoptosis , 2005, Nature Reviews Molecular Cell Biology.

[43]  W. Merrick Cap-dependent and cap-independent translation in eukaryotic systems. , 2004, Gene.

[44]  T. Suda,et al.  Defective smooth muscle development in qkI‐deficient mice , 2003, Development, growth & differentiation.

[45]  P. Sarnow,et al.  Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. , 1995, Science.

[46]  R. Garrett,et al.  A site-specific endonuclease encoded by a typical archaeal intron. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Peter Goodfellow,et al.  Circular transcripts of the testis-determining gene Sry in adult mouse testis , 1993, Cell.

[48]  Roger A. Garrett,et al.  Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium desulfurococcus mobilis , 1988, Cell.

[49]  N. Sonenberg,et al.  Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA , 1988, Nature.

[50]  D. Riesner,et al.  Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Shu-Bing Qian,et al.  A mRNA methylation directs translational control of heat shock response , 2016 .

[52]  Dana H. Ballard,et al.  Computer Vision , 1982 .