Multivariate visualization using metric scaling

The authors present an efficient visualization approach to support multivariate data exploration through a simple but effective low dimensional data overview based on metric scaling. A multivariate dataset is first transformed into a set of dissimilarities between all pairs of data records. A graph configuration algorithm based on principal components is then wed to determine the display coordinates of the data records in the low dimensional data overview. This overview provides a graphical summary of the multivariate data with reduced data dimensions, reduced data size, and additional data semantics. It can be used to enhance multidimensional data brushing, or to arrange the layout of other conventional multivariate visualization techniques. Real life data is used to demonstrate the approach.

[1]  Alfred Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[2]  Pak Chung Wong,et al.  Authenticity analysis of wavelet approximations in visualization , 1995, Proceedings Visualization '95.

[3]  Andreas Buja,et al.  Grand tour and projection pursuit , 1995 .

[4]  Matthew O. Ward,et al.  Animating multidimensional scaling to visualize N-dimensional data sets , 1996, Proceedings IEEE Symposium on Information Visualization '96.

[5]  Georges G. Grinstein,et al.  Iconographic Displays For Visualizing Multidimensional Data , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.

[6]  Alfred Inselberg,et al.  Convexity algorithms in parallel coordinates , 1987, JACM.

[7]  Hans-Peter Kriegel,et al.  Visual feedback in querying large databases , 1993, Proceedings Visualization '93.

[8]  Pak Chung Wong,et al.  Multiresolution multidimensional wavelet brushing , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[9]  Matthew O. Ward,et al.  High Dimensional Brushing for Interactive Exploration of Multivariate Data , 1995, Proceedings Visualization '95.

[10]  A. Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[11]  Hans-Peter Kriegel,et al.  VisDB: database exploration using multidimensional visualization , 1994, IEEE Computer Graphics and Applications.

[12]  Pak Chung Wong,et al.  30 Years of Multidimensional Multivariate Visualization , 1994, Scientific Visualization.

[13]  Jeff Beddow,et al.  Shape coding of multidimensional data on a microcomputer display , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[14]  Pak Chung Wong,et al.  Dual multiresolution HyperSlice for multivariate data visualization , 1996, Proceedings IEEE Symposium on Information Visualization '96.

[15]  J. E. Jackson A User's Guide to Principal Components , 1991 .

[16]  Andreas Buja,et al.  Analyzing High-Dimensional Data with Motion Graphics , 1990, SIAM J. Sci. Comput..

[17]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.