A reaction coefficient identification problem for fractional diffusion

We analyze a reaction coefficient identification problem for the spectral fractional powers of a symmetric, coercive, linear, elliptic, second-order operator in a bounded domain $\Omega$. We realize fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on the semi-infinite cylinder $\Omega \times (0,\infty)$. We thus consider an equivalent coefficient identification problem, where the coefficient to be identified appears explicitly. We derive existence of local solutions, optimality conditions, regularity estimates, and a rapid decay of solutions on the extended domain $(0,\infty)$. The latter property suggests a truncation that is suitable for numerical approximation. We thus propose and analyze a fully discrete scheme that discretizes the set of admissible coefficients with piecewise constant functions. The discretization of the state equation relies on the tensorization of a first-degree FEM in $\Omega$ with a suitable $hp$-FEM in the extended dimension. We derive convergence results and obtain, under the assumption that in neighborhood of a local solution the second derivative of the reduced cost functional is coercive, a priori error estimates.

[1]  Tosio Kato Perturbation theory for linear operators , 1966 .

[2]  Daisuke Fujiwara,et al.  Concrete Characterization of the Domains of Fractional Powers of Some Elliptic Differential Operators of the Second Order , 1967 .

[3]  B. Muckenhoupt,et al.  Weighted norm inequalities for the Hardy maximal function , 1972 .

[4]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[5]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[6]  Carlos E. Kenig,et al.  The local regularity of solutions of degenerate elliptic equations , 1982 .

[7]  Bohumír Opic,et al.  How to define reasonably weighted Sobolev spaces , 1984 .

[8]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[9]  K. Kunisch,et al.  Stability for parameter estimation in two point boundary value problems. , 1986 .

[10]  H. Engl,et al.  Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .

[11]  Stability for parameter estimation in two point boundary value problems , 1991 .

[12]  Andreas Neubauer,et al.  Tikhonov regularization of nonlinear III-posed problems in hilbert scales , 1992 .

[13]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[14]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[15]  B. Turesson,et al.  Nonlinear Potential Theory and Weighted Sobolev Spaces , 2000 .

[16]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[17]  E. Casas,et al.  Error estimates for the finite-element approximation of a semilinear elliptic control problem , 2002 .

[18]  Oliver Dorn,et al.  Fréchet Derivatives for Some Bilinear Inverse Problems , 2002, SIAM J. Appl. Math..

[19]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[20]  Ronny Ramlau,et al.  TIGRA—an iterative algorithm for regularizing nonlinear ill-posed problems , 2003 .

[21]  Xue-Cheng Tai,et al.  Identification of Discontinuous Coefficients in Elliptic Problems Using Total Variation Regularization , 2003, SIAM J. Sci. Comput..

[22]  S. Holm,et al.  Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. , 2004, The Journal of the Acoustical Society of America.

[23]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[24]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[25]  S. Levendorskii,et al.  PRICING OF THE AMERICAN PUT UNDER LÉVY PROCESSES , 2004 .

[26]  T. Roubíček Nonlinear partial differential equations with applications , 2005 .

[27]  O. Scherzer,et al.  Error estimates for non-quadratic regularization and the relation to enhancement , 2006 .

[28]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[29]  Wen Chen A speculative study of 23-order fractional Laplacian modeling of turbulence: some thoughts and conjectures. , 2006, Chaos.

[30]  Unione matematica italiana Lecture notes of the Unione matematica italiana , 2006 .

[31]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[32]  A. Volberg,et al.  Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2007 .

[33]  V. Gol'dshtein,et al.  Weighted Sobolev spaces and embedding theorems , 2007, math/0703725.

[34]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[35]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[36]  Xavier Cabre,et al.  Positive solutions of nonlinear problems involving the square root of the Laplacian , 2009, 0905.1257.

[37]  Guy Chavent,et al.  Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-Step Guide for Applications , 2009 .

[38]  P. R. Stinga,et al.  Extension Problem and Harnack's Inequality for Some Fractional Operators , 2009, 0910.2569.

[39]  A. Kröner,et al.  A priori error estimates for elliptic optimal control problems with a bilinear state equation , 2009 .

[40]  Dinh Nho Hào,et al.  Convergence rates for Tikhonov regularization of coefficient identification problems in Laplace-type equations , 2010 .

[41]  Louis Dupaigne,et al.  Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations , 2010, 1004.1906.

[42]  B. Hofmann,et al.  Convergence rates for the iteratively regularized Gauss–Newton method in Banach spaces , 2010 .

[43]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[44]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[45]  Yannick Sire,et al.  Nonlinear equations for fractional laplacians II: existence, uniqueness, and qualitative properties of solutions , 2011, 1111.0796.

[46]  Dinh Nho Hào,et al.  Convergence rates for Tikhonov regularization of a two-coefficient identification problem in an elliptic boundary value problem , 2012, Numerische Mathematik.

[47]  Barbara Kaltenbacher,et al.  Regularization Methods in Banach Spaces , 2012, Radon Series on Computational and Applied Mathematics.

[48]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[49]  C. Brändle,et al.  A concave—convex elliptic problem involving the fractional Laplacian , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[50]  Ricardo H. Nochetto,et al.  A PDE approach to numerical fractional diffusion , 2015, 1508.04382.

[51]  J. V'azquez Recent progress in the theory of Nonlinear Diffusion with Fractional Laplacian Operators , 2014, 1401.3640.

[52]  P. R. Stinga,et al.  Fractional elliptic equations, Caccioppoli estimates and regularity , 2014, 1409.7721.

[53]  Jan S. Hesthaven,et al.  Numerical Approximation of the Fractional Laplacian via hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hp$$\end{doc , 2014, Journal of Scientific Computing.

[54]  Ricardo H. Nochetto,et al.  A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..

[55]  E. Valdinoci,et al.  Nonlocal Diffusion and Applications , 2015, 1504.08292.

[56]  Giovanni Molica Bisci,et al.  Variational Methods for Nonlocal Fractional Problems , 2016 .

[57]  Sabine Fenstermacher,et al.  Estimation Techniques For Distributed Parameter Systems , 2016 .

[58]  Ricardo H. Nochetto,et al.  A PDE Approach to Space-Time Fractional Parabolic Problems , 2014, SIAM J. Numer. Anal..

[59]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[60]  Eduardo Casas,et al.  Optimal Control of Partial Differential Equations , 2017 .

[61]  Tran Nhan Tam Quyen Variational method for multiple parameter identification in elliptic PDEs , 2017, 1704.00525.

[62]  Tran Nhan Tam Quyen,et al.  Identifying conductivity in electrical impedance tomography with total variation regularization , 2016, Numerische Mathematik.

[63]  Barbara Kaltenbacher,et al.  On convergence and convergence rates for Ivanov and Morozov regularization and application to some parameter identification problems in elliptic PDEs , 2018, 1801.10181.

[64]  Martin Burger,et al.  Modern regularization methods for inverse problems , 2018, Acta Numerica.

[65]  Ricardo H. Nochetto,et al.  Tensor FEM for Spectral Fractional Diffusion , 2017, Foundations of Computational Mathematics.