Researching COVID to Enhance Recovery (RECOVER) adult study protocol: Rationale, objectives, and design

Importance: SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis. Methods: RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged [≥]18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms. Discussion: RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options.

Michael I. Jordan | David E. Warren | David W. Chestek | Leora I. Horwitz | F. Greenway | H. May | M. Peluso | A. Finn | Jeffrey N. Martin | I. Bassett | L. Horwitz | E. Karlson | S. Parthasarathy | F. Sciurba | M. Lamendola-Essel | H. Sesso | S. Seshadri | B. Levy | B. Chen | M. Mittleman | C. Bime | G. Nadkarni | S. Judd | U. Reddy | J. Thorp | D. Rouse | J. Facelli | R. Hess | H. Ashktorab | A. Charney | S. Hoover | M. Cicek | S. Vernon | M. Gennaro | G. McComsey | B. Plunkett | J. Quigley | J. Kirwan | J. Hafner | D. Quinn | A. Foulkes | A. Poppas | S. Deeks | Jun Sun | N. Rouphael | S. Donohue | K. Tuttle | J. Granger | S. Jolley | J. James | J. Wisnivesky | P. Chen | J. Mullington | M. Bind | S. Parry | H. Brim | J. Logue | H. Chu | H. Algren | J. Goldman | J. Heath | Andre Kumar | E. Gallagher | C. Horowitz | V. Subbian | B. Taylor | Li Q. Chen | M. Suthar | J. Wood | A. Laiyemo | P. Hsue | J. Wheeler | E. Nahin | C. Pettker | H. Simhan | R. Clifton | R. Patzer | T. Patterson | B. Bedi | L. Black | D. Chow | V. Flaherman | H. Ward | P. Jagannathan | M. Harkins | A. Kim | S. Weiner | Z. Sherif | E. Shemesh | H. Mendez-Figueroa | N. Bhadelia | J. Gander | L. Yee | A. Blomkalns | Minjoung Go | R. Lefebvre | H. Raissy | C. Luciano | N. Williams | Jenny E. Han | S. Brosnahan | A. Pearman | P. Ogbogu | S. Whiteheart | U. Singh | J. Z. Porterfield | N. Singer | K. Pogreba-Brown | D. C. Chow | L. Stiles | V. Jacoby | Steven J. Weiner | S. Mohandas | M. Costantine | Alfredo E Urdaneta | G. Mallett | James Chan | D. Shah | Peter Chen | Diane G Kanjilal | A. Palatnik | J. Dickinson | J. Santana | On Ho | T. Metz | C. Selvaggi | J. Kelly | D. McDonald | D. Shinnick | S. Cribbs | F. Rischard | A. Sowles | K. Gibson | Shahdi K Malakooti | T. Parimon | Rachael Farah-Abraham | M. Durstenfeld | Lucio Miele | Grecio J Sandoval | P. Utz | Z. Wiley | I. Ofotokun | C. Rebello | M. Castro | Ivette F Emery | V. Marconi | L. Nichols | Lori B Chibnik | R. Hess | V. Fonseca | L. Black | K. Lutrick | Mario Castro | C. Mouchati | K. Palomares | N. Singer | M. Lanca | Sokratis N. Zisis | Helen Y. Chu | T. Thaweethai | A. Vasey | B. Bedi | J. Fleurimont | Johana M. Rosas | R. B. Neuman | Robin E Tragus | M. Çiçek | B. Hughes | G. Maranga | Priscilla Pemu | Shelby Collins | Clifford J. Rosen | K. Anglin | Rebecca Reece | L. Chen | Janko Ž Nikolich | Kristine M. Erlandson | K. Knox | Gailen D. Marshall | M. R. Jordan | S. N. Goodman | Lisa Aponte‐Soto | S. Ahmed | J. John | Larissa Teunis | J. A. Krishnan | D. Chestek | Stuart D. Katz | J. Chan | Shannon M Schlater | Alan T N Tita | L. Chibnik | Tanayott Thaweethai | Shifa Ahmed | Melinda S. Fischer | Harvey Hsu | Lauren Nichols | Crystal M. Vidal | Carla Hernandez | Sara W. Kelly | T. Thaweethai | S. B. Brosnahan | M. L. Fitzgerald | J. D. Goldman | S. L. Hodder | V. L. Jacoby | J. A. Krishnan | A. O. Laiyemo | T. D. Metz | R. E. Patzer | A. Sekar | N. G. Singer | L. E. Stiles | B. S. Taylor | H. A. Algren | K. Anglin | L. Aponte-Soto | H. Ashktorab | I. V. Bassett | B. Bedi | N. Bhadelia | M.-A. C. Bind | A. L. Blomkalns | H. Brim | A. W. Charney | D. Chestek | D. C. Chow | H. Y. Chu | R Clifton | Jordan C Weyer | Matthew K. Hoffman | S. Hodder | Benjamin K. Chen | L. Aponte‐Soto | Michele T. Longo | B. Chen | A. Sekar | M. Fitzgerald | A. O. Laiyemo | A. Charney | Megan Fitzgerald | J. Juskowich | Natalie Young | Brian P. Logarbo | H. Reeder | Adam Ruff | Amberly Ticotsky | P. Pemu | Janet Y Lin | T. VanWagoner | Anisha Sekar | Jai G Marathe | Kristine S P Hauser | Carla R Hernandez | Joyce K Lee-Lannotti | Christopher F Martin | Lisa T Newman | Amber Nguyen | Christina Saint Jean | T. Walker | Ryan Weeks | Janko Ž. Nikolich | David Chestek | Megan L. Fitzgerald | Candida J. Rebello | Ighovwhera Ofotokun | Christian Mouchati | Jeffrey N. Martin | Joy J. Juskowich | Sara Kelly | Brian Logarbo | Harrison T. Reeder | Zanthia Wiley | Shahdi K. Malakooti | Shari B. Brosnahan | Lori B. Chibnik | Grecio J. Sandoval | Nadine G. Rouphael | Shari B Brosnahan | Christopher F. Martin | Dylan McDonald | Daniel J. Shinnick | Larissa J. Teunis | Crystal Vidal

[1]  G. Saade,et al.  Researching COVID to enhance recovery (RECOVER) pregnancy study: Rationale, objectives and design , 2023, medRxiv.

[2]  M. Peluso,et al.  Chronic viral coinfections differentially affect the likelihood of developing long COVID , 2023, The Journal of Clinical Investigation.

[3]  E. Topol,et al.  Long COVID: major findings, mechanisms and recommendations , 2023, Nature Reviews Microbiology.

[4]  M. Bivas-Benita,et al.  Long covid outcomes at one year after mild SARS-CoV-2 infection: nationwide cohort study , 2023, BMJ.

[5]  Michael A. Gargano,et al.  Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes , 2022, eBioMedicine.

[6]  K. Khunti,et al.  The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: A systematic review and meta-analysis , 2022, eClinicalMedicine.

[7]  S. Pittaluga,et al.  SARS-CoV-2 infection and persistence in the human body and brain at autopsy , 2022, Nature.

[8]  M. Maniscalco,et al.  Clinical assessment of endothelial function in convalescent COVID-19 patients: a meta-analysis with meta-regressions , 2022, Annals of medicine.

[9]  L. Wieler,et al.  Post-COVID-19-associated morbidity in children, adolescents, and adults: A matched cohort study including more than 157,000 individuals with COVID-19 in Germany , 2022, PLoS medicine.

[10]  M. Horberg,et al.  Post-acute sequelae of SARS-CoV-2 with clinical condition definitions and comparison in a matched cohort , 2022, Nature Communications.

[11]  Christopher J. L. Murray,et al.  Estimated Global Proportions of Individuals With Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021. , 2022, JAMA.

[12]  D. Sedding,et al.  Liquid biomarkers of macrophage dysregulation and circulating spike protein illustrate the biological heterogeneity in patients with post‐acute sequelae of COVID‐19 , 2022, medRxiv.

[13]  D. Kell,et al.  Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC) , 2022, Cardiovascular Diabetology.

[14]  J. Laurence,et al.  Long COVID endotheliopathy: hypothesized mechanisms and potential therapeutic approaches , 2022, The Journal of clinical investigation.

[15]  Anna Irene Vedel Sørensen,et al.  A nationwide questionnaire study of post-acute symptoms and health problems after SARS-CoV-2 infection in Denmark , 2022, Nature Communications.

[16]  Assessment of the Frequency and Variety of Persistent Symptoms Among Patients With COVID-19 , 2022, The Journal of Emergency Medicine.

[17]  E. Bouvier,et al.  Asthma and Cacosmia Could Be Predictive Factors of Olfactory Dysfunction Persistence 9 Months after SARS-CoV-2 Infection: The ANOSVID Study , 2022, Life.

[18]  M. Peluso,et al.  Markers of fungal translocation are elevated during post-acute sequelae of SARS-CoV-2 and induce NF-κB signaling , 2022, JCI insight.

[19]  Shaghayegh Haghjooy Javanmard,et al.  A global systematic analysis of the occurrence, severity, and recovery pattern of long COVID in 2020 and 2021 , 2022, medRxiv.

[20]  C. Maertens de Noordhout,et al.  Pathophysiology and mechanism of long COVID: a comprehensive review , 2022, Annals of medicine.

[21]  A. Boner,et al.  Long COVID: A proposed hypothesis-driven model of viral persistence for the pathophysiology of the syndrome. , 2022, Allergy and asthma proceedings.

[22]  Laura Schneider,et al.  Characterization of autonomic symptom burden in long COVID: A global survey of 2,314 adults , 2022, Frontiers in Neurology.

[23]  M. Peluso,et al.  SARS‐CoV‐2 and Mitochondrial Proteins in Neural‐Derived Exosomes of COVID‐19 , 2022, Annals of neurology.

[24]  S. Ng,et al.  Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome , 2022, Gut.

[25]  P. Shah,et al.  Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease , 2022, Immunity.

[26]  Inyoul Y. Lee,et al.  Multiple early factors anticipate post-acute COVID-19 sequelae , 2022, Cell.

[27]  S. Kent,et al.  Immunological dysfunction persists for 8 months following initial mild-moderate SARS-CoV-2 infection , 2021, medRxiv.

[28]  H. Li,et al.  Immune signatures underlying post-acute COVID-19 lung sequelae , 2021, Science Immunology.

[29]  M. Peluso,et al.  Markers of Immune Activation and Inflammation in Individuals With Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. , 2021, The Journal of infectious diseases.

[30]  Ashish Gupta,et al.  Post COVID-19 sequelae: A prospective observational study from Northern India , 2021, medRxiv.

[31]  T. Triche,et al.  Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection , 2021, bioRxiv.

[32]  D. Hurley,et al.  Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation , 2021, Pathogens.

[33]  D. Kell,et al.  Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin , 2021, Cardiovascular Diabetology.

[34]  L. Rénia,et al.  Persistent Symptoms and Association With Inflammatory Cytokine Signatures in Recovered Coronavirus Disease 2019 Patients , 2021, Open forum infectious diseases.

[35]  Benjamin Bowe,et al.  High-dimensional characterization of post-acute sequelae of COVID-19 , 2021, Nature.

[36]  Guohui Fan,et al.  RETRACTED: 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study , 2021, The Lancet.

[37]  G. Poudel,et al.  Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection A Systematic Review , 2021 .

[38]  Ryan J. Low,et al.  Characterizing long COVID in an international cohort: 7 months of symptoms and their impact , 2020, EClinicalMedicine.

[39]  M. Nussenzweig,et al.  Evolution of Antibody Immunity to SARS-CoV-2 , 2020, bioRxiv.

[40]  G. Giannelli,et al.  Preliminary Trajectories in Dietary Behaviors during the COVID-19 Pandemic: A Public Health Call to Action to Face Obesity , 2020, International journal of environmental research and public health.

[41]  Ambarish Chattopadhyay,et al.  Balancing vs modeling approaches to weighting in practice , 2020, Statistics in medicine.

[42]  Kristy L Marynak,et al.  Delay or Avoidance of Medical Care Because of COVID-19–Related Concerns — United States, June 2020 , 2020, MMWR. Morbidity and mortality weekly report.

[43]  Paul A. Harris,et al.  The REDCap consortium: Building an international community of software platform partners , 2019, J. Biomed. Informatics.

[44]  Cynna Selvy,et al.  Clinical Laboratory Improvement Amendments (CLIA) , 2015 .

[45]  P. Harris,et al.  Research electronic data capture (REDCap) - A metadata-driven methodology and workflow process for providing translational research informatics support , 2009, J. Biomed. Informatics.

[46]  Jill P. Mesirov,et al.  Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data , 2003, Machine Learning.

[47]  J. Robins,et al.  Marginal Structural Models and Causal Inference in Epidemiology , 2000, Epidemiology.

[48]  Robert Gray,et al.  A Proportional Hazards Model for the Subdistribution of a Competing Risk , 1999 .

[49]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .