Parameter-dependent Lyapunov functions, constant real parameter uncertainty, and the Popov criterion in robust analysis and synthesis. 2

A framework for parameter-dependent Lyapunov functions, a less conservative refinement of 'fixed' Lyapunov functions, is developed. An immediate application of this framework is a reinterpretation of the classical Popov criterion as a parameter-dependent Lyapunov function. This observation is exploited to obtain conditions for robust controller synthesis with full-state, full-order, and reduced-order controllers in H/sub 2/ and H/sub 2//H/sub infinity / settings. >

[1]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[2]  B. Anderson A SYSTEM THEORY CRITERION FOR POSITIVE REAL MATRICES , 1967 .

[3]  T. K. C. Peng,et al.  Adaptive Guaranteed Cost of Control of Systems with Uncertain Parameters , 1970 .

[4]  J. Willems The Generation of Lyapunov Functions for Input-Output Stable Systems , 1971 .

[5]  Brian D. O. Anderson,et al.  The small-gain theorem, the passivity theorem and their equivalence , 1972 .

[6]  A. Mees,et al.  The Popov criterion for multiple-loop feedback systems , 1980 .

[7]  E. Noldus Design of robust state feedback laws , 1982 .

[8]  Ian R. Petersen A Riccati equation approach to the design of stabilizing controllers and observers for a class of uncertain linear systems , 1985 .

[9]  P. Khargonekar,et al.  Stability robustness bounds for linear state-space models with structured uncertainty , 1987 .

[10]  Stephen P. Boyd,et al.  Structured and Simultaneous Lyapunov Functions for System Stability Problems , 1989 .

[11]  Dennis S. Bernstein,et al.  Robust stability and performance analysis for linear dynamic systems , 1989 .

[12]  D. Bernstein,et al.  Robust stability and performance analysis for state-space systems via quadratic Lyapunov bounds , 1990 .

[13]  J. S. Gibson,et al.  A first-order Lyapunov robustness method for linear systems with uncertain parameters , 1990 .

[14]  Dennis S. Bernstein,et al.  Real parameter uncertainty and phase information in the robust control of flexible structures , 1990, 29th IEEE Conference on Decision and Control.

[15]  D. Bernstein,et al.  Robust stabilization with positive real uncertainty: beyond the small gain theory , 1991 .

[16]  D. Bernstein,et al.  SMALL GAIN VERSUS POSITIVE REAL MODELING OF REAL PARAMETER UNCERTAINTY , 1992 .