State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model

[1]  A. Stefanopoulou,et al.  Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter , 2010 .

[2]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[3]  H. Fathy,et al.  Reduction of an Electrochemistry-Based Li-Ion Battery Model via Quasi-Linearization and Padé Approximation , 2011 .

[4]  Bo-Hyung Cho,et al.  Li-Ion Battery SOC Estimation Method based on the Reduced Order Extended Kalman Filtering , 2006 .

[5]  M. Verbrugge,et al.  Electrochemical analysis of lithiated graphite anodes , 2003 .

[6]  I. Staffell,et al.  Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects , 2012 .

[7]  Ralph E. White,et al.  Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries , 2006 .

[8]  Christopher D. Rahn,et al.  Battery Systems Engineering , 2014 .

[9]  薮内 直明,et al.  Solid state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries , 2006 .

[10]  C. Rahn,et al.  Discretization methods for battery systems modeling , 2011, Proceedings of the 2011 American Control Conference.

[11]  Giorgio Rizzoni,et al.  Design and parametrization analysis of a reduced-order electrochemical model of graphite/LiFePO4 cells for SOC/SOH estimation , 2013 .

[12]  Il-Song Kim,et al.  The novel state of charge estimation method for lithium battery using sliding mode observer , 2006 .

[13]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[14]  Andrew Chemistruck,et al.  One-dimensional physics-based reduced-order model of lithium-ion dynamics , 2012 .

[15]  Chonghun Han,et al.  State-of-charge estimation for lithium-ion batteries under various operating conditions using an equivalent circuit model , 2012, Comput. Chem. Eng..

[16]  Jun Xu,et al.  A new method to estimate the state of charge of lithium-ion batteries based on the battery impedance model , 2013 .

[17]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background , 2004 .

[18]  Ralph E. White,et al.  Online Estimation of the State of Charge of a Lithium Ion Cell , 2006 .

[19]  Ralph E. White,et al.  Approximate Solutions for Galvanostatic Discharge of Spherical Particles I. Constant Diffusion Coefficient , 2001 .

[20]  Christopher D. Rahn,et al.  Development of a First Principles Equivalent Circuit Model for a Lithium Ion Battery , 2012 .

[21]  Weifeng Fang,et al.  Electrochemical–thermal modeling of automotive Li‐ion batteries and experimental validation using a three‐electrode cell , 2010 .

[22]  Christopher D. Rahn,et al.  A reduced order electrolyte enhanced single particle lithium ion cell model for hybrid vehicle applications , 2014, 2014 American Control Conference.

[23]  Hongwen He,et al.  Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles , 2012 .

[24]  Tanvir R. Tanim,et al.  A Temperature Dependent, Single Particle, Lithium Ion Cell Model Including Electrolyte Diffusion , 2015 .

[25]  Chaoyang Wang,et al.  Model Order Reduction of 1D Diffusion Systems Via Residue Grouping , 2008 .

[26]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation , 2004 .

[27]  Ralph E. White,et al.  A Boundary Condition for Porous Electrodes , 2004 .

[28]  M. Zolot,et al.  Battery usage and thermal performance of the Toyota Prius and Honda Insight during chassis dynamometer testing , 2002, Seventeenth Annual Battery Conference on Applications and Advances. Proceedings of Conference (Cat. No.02TH8576).

[29]  Chaoyang Wang,et al.  Li-Ion Cell Operation at Low Temperatures , 2013 .

[30]  Ralph E. White,et al.  Extension of Physics-Based single Particle Model for Higher Charge-Discharge Rates , 2013 .

[31]  Tsutomu Ohzuku,et al.  Solid-State Chemistry and Electrochemistry of LiCo1 ∕ 3Ni1 ∕ 3Mn1 ∕ 3O2 for Advanced Lithium-Ion Batteries III. Rechargeable Capacity and Cycleability , 2007 .

[32]  Rolf Findeisen,et al.  State estimation of a reduced electrochemical model of a lithium-ion battery , 2010, Proceedings of the 2010 American Control Conference.

[33]  B. Gebhart,et al.  Heat Conduction and Mass Diffusion , 1993 .

[34]  C. E. Thomas Transportation options in a carbon-constrained world: Hybrids, plug-in hybrids, biofuels, fuel cell electric vehicles, and battery electric vehicles , 2009 .

[35]  C. W. Lin,et al.  Preparation and properties of cross-linked sulfonated poly(imide-siloxane) for polymer electrolyte fuel cell application , 2013 .

[36]  Miroslav Krstic,et al.  PDE estimation techniques for advanced battery management systems — Part I: SOC estimation , 2012, 2012 American Control Conference (ACC).

[37]  Rolf Findeisen,et al.  Electrochemical Model Based Observer Design for a Lithium-Ion Battery , 2013, IEEE Transactions on Control Systems Technology.

[38]  Christopher D. Rahn,et al.  Model-Based Electrochemical Estimation and Constraint Management for Pulse Operation of Lithium Ion Batteries , 2010, IEEE Transactions on Control Systems Technology.

[39]  Xiaosong Hu,et al.  Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer , 2010 .

[40]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification , 2004 .

[41]  T. Jacobsen,et al.  Diffusion impedance in planar, cylindrical and spherical symmetry , 1995 .