Neural processing of amplitude-modulated sounds.

Amplitude modulation (AM) is a temporal feature of most natural acoustic signals. A long psychophysical tradition has shown that AM is important in a variety of perceptual tasks, over a range of time scales. Technical possibilities in stimulus synthesis have reinvigorated this field and brought the modulation dimension back into focus. We address the question whether specialized neural mechanisms exist to extract AM information, and thus whether consideration of the modulation domain is essential in understanding the neural architecture of the auditory system. The available evidence suggests that this is the case. Peripheral neural structures not only transmit envelope information in the form of neural activity synchronized to the modulation waveform but are often tuned so that they only respond over a limited range of modulation frequencies. Ascending the auditory neuraxis, AM tuning persists but increasingly takes the form of tuning in average firing rate, rather than synchronization, to modulation frequency. There is a decrease in the highest modulation frequencies that influence the neural response, either in average rate or synchronization, as one records at higher and higher levels along the neuraxis. In parallel, there is an increasing tolerance of modulation tuning for other stimulus parameters such as sound pressure level, modulation depth, and type of carrier. At several anatomical levels, consideration of modulation response properties assists the prediction of neural responses to complex natural stimuli. Finally, some evidence exists for a topographic ordering of neurons according to modulation tuning. The picture that emerges is that temporal modulations are a critical stimulus attribute that assists us in the detection, discrimination, identification, parsing, and localization of acoustic sources and that this wide-ranging role is reflected in dedicated physiological properties at different anatomical levels.

[1]  H. Helmholtz,et al.  On the Sensations of Tone as a Physiological Basis for the Theory of Music , 2005 .

[2]  W. D. Neff Behavioral studies of auditory discrimination. , 1957, The Annals of otology, rhinology, and laryngology.

[3]  R. Galamboš,et al.  Response of single medial geniculate units to repetitive click stimuli. , 1957, The American journal of physiology.

[4]  W. T. Peake,et al.  Responses of the Auditory Nerve to Repetitive Acoustic Stimuli , 1959 .

[5]  R. Ritsma Existence Region of the Tonal Residue. I , 1962 .

[6]  Jay M. Goldberg,et al.  SOME DISCHARGE CHARACTERISTICS OF SINGLE NEURONS IN THE INFERIOR COLLICULUS OF THE CAT. I. TONOTOPICAL ORGANIZATION, RELATION OF SPIKE-COUNTS TO TONE INTENSITY, AND FIRING PATTERNS OF SINGLE ELEMENTS , 1963 .

[7]  I. Whitfield,et al.  RESPONSES OF AUDITORY CORTICAL NEURONS TO STIMULI OF CHANGING FREQUENCY. , 1965, Journal of neurophysiology.

[8]  W. D. Neff Contributions to sensory physiology , 1965 .

[9]  D Symmes,et al.  Discrimination of intermittent noise by macaques following lesions of the temporal lobe. , 1966, Experimental neurology.

[10]  S. Erulkar,et al.  Responses of units of the inferior colliculus to time-varying acoustic stimuli. , 1966, Journal of neurophysiology.

[11]  S. Altmann,et al.  Social communication among primates , 1967 .

[12]  S. Erulkar,et al.  Excitation and inhibition in cochlear nucleus. II. Frequency-modulated tones. , 1968, Journal of neurophysiology.

[13]  T J Glattke Unit responses of the cat cochlear nucleus to amplitude-modulated stimuli. , 1969, The Journal of the Acoustical Society of America.

[14]  K K Osen,et al.  Cytoarchitecture of the cochlear nuclei in the cat , 1969 .

[15]  J. Goldberg,et al.  Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. , 1969, Journal of neurophysiology.

[16]  David J. Anderson,et al.  Temporal Position of Discharges in Single Auditory Nerve Fibers within the Cycle of a Sine‐Wave Stimulus: Frequency and Intensity Effects , 1971 .

[17]  R. Lavine Phase-locking in response of single neurons in cochlear nucler complex of the cat to low-frequency tonal stimuli. , 1971, Journal of Neurophysiology.

[18]  J. Newman,et al.  Auditory Cortex of Squirrel Monkey: Response Patterns of Single Cells to Species-Specific Vocalizations , 1972, Science.

[19]  G L Gerstein,et al.  Response of cat cochlear nucleus neurons to frequency and amplitude modulated tones. , 1972, Brain research.

[20]  R. Kay,et al.  On the existence in human auditory pathways of channels selectively tuned to the modulation present in frequency‐modulated tones , 1972, The Journal of physiology.

[21]  M. Rodenburg,et al.  Analysis of evoked responses in man elicited by sinusoidally modulated noise. , 1972, Audiology : official organ of the International Society of Audiology.

[22]  A. Møller,et al.  Coding of amplitude and frequency modulated sounds in the cochlear nucleus of the rat. , 1972, Acta physiologica Scandinavica.

[23]  T. Houtgast,et al.  The Modulation Transfer Function in Room Acoustics as a Predictor of Speech Intelligibility , 1973 .

[24]  J. Goldberg,et al.  Discharge characteristics of neurons in anteroventral and dorsal cochlear nuclei of cat. , 1973, Brain research.

[25]  Don H. Johnson,et al.  The response of single auditory-nerve fibers in the cat to single tones: synchrony and average discharge rate , 1974 .

[26]  M. Sachs,et al.  Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. , 1974, The Journal of the Acoustical Society of America.

[27]  M M Merzenich,et al.  Representation of the cochlea within the inferior colliculus of the cat. , 1974, Brain research.

[28]  D. K. Morest,et al.  The neuronal architecture of the cochlear nucleus of the cat , 1974, The Journal of comparative neurology.

[29]  A. Møller Responses of units in the cochlear nucleus to sinusoidally amplitude-modulated tones. , 1974, Experimental neurology.

[30]  D. M. Green,et al.  The perception of pitch. , 1974, American scientist.

[31]  G G Green,et al.  Proceedings: Channels in the human auditory system concerned with the wave form of the modulation present in amplitude and frequency-modulated tones. , 1974, The Journal of physiology.

[32]  Wightman Fl,et al.  The perception of pitch. , 1974 .

[33]  N. Kiang,et al.  Single unit activity in the posteroventral cochlear nucleus of the cat , 1975, The Journal of comparative neurology.

[34]  R. Voss,et al.  ‘1/fnoise’ in music and speech , 1975, Nature.

[35]  A R Moller Latency of unit responses in cochlear nucleus determined in two different ways. , 1975, Journal of neurophysiology.

[36]  D A Godfrey,et al.  Single unit activity in the dorsal cochlear nucleus of the cat , 1975, The Journal of comparative neurology.

[37]  E. Evans Cochlear Nerve and Cochlear Nucleus , 1975 .

[38]  M. Sanders Handbook of Sensory Physiology , 1975 .

[39]  A. Sovijärvi,et al.  Detection of natural complex sounds by cells in the primary auditory cortex of the cat. , 1975, Acta physiologica Scandinavica.

[40]  A. Møller,et al.  Dynamic properties of the responses of single neurones in the cochlear nucleus of the rat. , 1976, The Journal of physiology.

[41]  A. Møller Dynamic properties of primary auditory fibers compared with cells in the cochlear nucleus. , 1976, Acta physiologica Scandinavica.

[42]  Robert R. Capranica,et al.  9- – THE AUDITORY SYSTEM , 1976 .

[43]  E. Owens Introduction to the Psychology of Hearing , 1977 .

[44]  B. Moore An Introduction to the Psychology of Hearing , 1977 .

[45]  G. Moushegian,et al.  Neuronal coding of vowel sounds in the cochlear nuclei , 1977, Experimental Neurology.

[46]  W. S. Rhode,et al.  Responses of fibers in the cat's auditory nerve to the cubic difference tone. , 1978, The Journal of the Acoustical Society of America.

[47]  M. Liberman,et al.  Auditory-nerve response from cats raised in a low-noise chamber. , 1978, The Journal of the Acoustical Society of America.

[48]  A. Møller Coding of increments and decrements in stimulus intensity in single units in the cochlear nucleus of the rat , 1979, Journal of neuroscience research.

[49]  E. F. Evans,et al.  Psychophysics and Physiology of Hearing , 1979 .

[50]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[51]  N. Viemeister Temporal modulation transfer functions based upon modulation thresholds. , 1979, The Journal of the Acoustical Society of America.

[52]  M N Semple,et al.  Representation of sound frequency and laterality by units in central nucleus of cat inferior colliculus. , 1979, Journal of neurophysiology.

[53]  E. Javel Coding of AM tones in the chinchilla auditory nerve: implications for the pitch of complex tones. , 1980, The Journal of the Acoustical Society of America.

[54]  I. Whitfield,et al.  Auditory cortex and the pitch of complex tones. , 1980, The Journal of the Acoustical Society of America.

[55]  D. H. Johnson,et al.  The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. , 1980, The Journal of the Acoustical Society of America.

[56]  M. Ruggero Systematic errors in indirect estimates of basilar membrane travel times. , 1980, The Journal of the Acoustical Society of America.

[57]  Robert L. Smith,et al.  Response modulation of auditory-nerve fibers by am stimuli: effects of average intensity , 1980, Hearing Research.

[58]  Taniguchi Kōgyō Shōreikai,et al.  Brain mechanisms of sensation , 1981 .

[59]  G. Henning,et al.  The effect of carrier and modulation frequency on lateralization based on interaural phase and interaural group delay , 1981, Hearing Research.

[60]  E. M. Burns,et al.  Played-again SAM: Further observations on the pitch of amplitude-modulated noise , 1981 .

[61]  E. Rouiller,et al.  Neural coding of repetitive clicks in the medial geniculate body of cat , 1981, Hearing Research.

[62]  R. Kay Hearing of modulation in sounds. , 1982, Physiological reviews.

[63]  R. Klinke,et al.  HEARING — Physiological Bases and Psychophysics , 1983, Springer Berlin Heidelberg.

[64]  N. Suga,et al.  Specificity of combination-sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat. , 1983, Journal of neurophysiology.

[65]  Adrian Rees,et al.  Responses of neurons in the inferior colliculus of the rat to AM and FM tones , 1983, Hearing Research.

[66]  R. Plomp The Role of Modulation in Hearing , 1983 .

[67]  A M Aertsen,et al.  Reverse-correlation methods in auditory research , 1983, Quarterly Reviews of Biophysics.

[68]  B. M. Johnstone,et al.  Group delay measurement from spiral ganglion cells in the basal turn of the guinea pig cochlea. , 1984, The Journal of the Acoustical Society of America.

[69]  T. Yin,et al.  Interaural time sensitivity of high-frequency neurons in the inferior colliculus. , 1984, The Journal of the Acoustical Society of America.

[70]  D. Oliver,et al.  The neuronal architecture of the inferior colliculus in the cat: Defining the functional anatomy of the auditory midbrain , 1984, The Journal of comparative neurology.

[71]  S Kuwada,et al.  Binaural interaction in low-frequency neurons in inferior colliculus of the cat. IV. Comparison of monaural and binaural response properties. , 1984, Journal of neurophysiology.

[72]  Murray B. Sachs,et al.  Representation of voice pitch in discharge patterns of auditory-nerve fibers , 1984, Hearing Research.

[73]  D. Moody,et al.  Evidence for a reappraisal of the psychophysical selective adaptation paradigm. , 1984, The Journal of the Acoustical Society of America.

[74]  Joseph W. Hall,et al.  Detection in noise by spectro-temporal pattern analysis. , 1984, The Journal of the Acoustical Society of America.

[75]  G H Wakefield,et al.  Selective adaptation to linear frequency-modulated sweeps: evidence for direction-specific FM channels? , 1984, The Journal of the Acoustical Society of America.

[76]  G. Paxinos The Rat nervous system , 1985 .

[77]  N. Viemeister,et al.  Temporal modulation transfer functions in normal-hearing and hearing-impaired listeners. , 1985, Audiology : official organ of the International Society of Audiology.

[78]  W. S. Rhode,et al.  Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers , 1985, Hearing Research.

[79]  W. S. Rhode,et al.  Encoding timing and intensity in the ventral cochlear nucleus of the cat. , 1986, Journal of neurophysiology.

[80]  T. Yin,et al.  Effects of interaural time delays of noise stimuli on low-frequency cells in the cat's inferior colliculus. I. Responses to wideband noise. , 1986, Journal of neurophysiology.

[81]  Dexter R. F. Irvine,et al.  The Auditory Brainstem: A Review of the Structure and Function of Auditory Brainstem Processing Mechanisms , 1986 .

[82]  A. Rees,et al.  Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man , 1986, Hearing Research.

[83]  D. Irvine The Auditory Brainstem , 1986, Progress in Sensory Physiology.

[84]  Steven Greenberg,et al.  Possible Role of Low and Medium Spontaneous Rate Cochlear Nerve Fibers in the Encoding of Waveform Periodicity , 1986 .

[85]  W. S. Rhode,et al.  Responses of Cochlear Nucleus Neurons to Speech Signals: Neural Encoding of Pitch, Intensity and other Parameters , 1986 .

[86]  Shigeyuki Kuwada,et al.  Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones , 1986, Hearing Research.

[87]  B. Moore,et al.  Auditory Frequency Selectivity , 1986, Nato ASI Series.

[88]  E Schorer,et al.  Critical modulation frequency based on detection of AM versus FM tones. , 1986, The Journal of the Acoustical Society of America.

[89]  Edwin Schorer,et al.  Searching for neural correlates of the hearing sensation fluctuation strength in the auditory cortex of squirrel monkeys , 1986, Hearing Research.

[90]  Adrian Rees,et al.  Dynamic properties of the responses of single neurons in the inferior colliculus of the rat , 1986, Hearing Research.

[91]  C. Schreiner,et al.  Representation of amplitude modulation in the auditory cortex of the cat. I. The anterior auditory field (AAF) , 1986, Hearing Research.

[92]  D J Van Tasell,et al.  Speech waveform envelope cues for consonant recognition. , 1987, The Journal of the Acoustical Society of America.

[93]  T. Picton,et al.  [Responses evoked in "steady state" in man by means of a sinusoidal frequency modulation]. , 1987, The Journal of otolaryngology.

[94]  D. M. Green,et al.  Detection of partially filled gaps in noise and the temporal modulation transfer function. , 1987, The Journal of the Acoustical Society of America.

[95]  G. K. Yates,et al.  Dynamic effects in the input/output relationship of auditory nerve , 1987, Hearing Research.

[96]  M. Ruggero,et al.  Timing of spike initiation in cochlear afferents: dependence on site of innervation. , 1987, Journal of neurophysiology.

[97]  Adrian Rees,et al.  Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds , 1987, Hearing Research.

[98]  M. Merzenich,et al.  Covariation of latency and temporal resolution in the inferior colliculus of the cat , 1987, Hearing Research.

[99]  D Robertson,et al.  Tuning in the mammalian cochlea. , 1988, Physiological reviews.

[100]  T. F. Weiss,et al.  A comparison of synchronization filters in different auditory receptor organs , 1988, Hearing Research.

[101]  Graeme K. Yates,et al.  Modulation transfer function of efferent neurones in the guinea pig cochlea , 1988, Hearing Research.

[102]  W. Shofner,et al.  Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. , 1988, Journal of neurophysiology.

[103]  C. Schreiner,et al.  Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. , 1988, Journal of neurophysiology.

[104]  C. Schreiner,et al.  Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. , 1988, Journal of neurophysiology.

[105]  J. Kelly,et al.  Organization of auditory cortex in the albino rat: sound frequency. , 1988, Journal of neurophysiology.

[106]  Eric Javel,et al.  Physiological and psychophysical correlates of temporal processes in hearing , 1988, Hearing Research.

[107]  C. Schreiner,et al.  Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields , 1988, Hearing Research.

[108]  J. L. Hollett,et al.  Repetition rate and signal level effects on neuronal responses to brief tone pulses in cat auditory cortex. , 1989, The Journal of the Acoustical Society of America.

[109]  T. Houtgast Frequency selectivity in amplitude-modulation detection. , 1989, The Journal of the Acoustical Society of America.

[110]  E. Rouiller,et al.  Functional organization of the ventral division of the medial geniculate body of the cat: Evidence for a rostro-caudal gradient of response properties and cortical projections , 1989, Hearing Research.

[111]  R. Batra,et al.  Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit. , 1989, Journal of neurophysiology.

[112]  S. Khanna,et al.  Spectral characteristics of the responses of primary auditory-nerve fibers to frequency-modulated signals , 1989, Hearing Research.

[113]  D. Grantham,et al.  Modulation masking: effects of modulation frequency, depth, and phase. , 1989, The Journal of the Acoustical Society of America.

[114]  W A Yost,et al.  Modulation interference in detection and discrimination of amplitude modulation. , 1989, The Journal of the Acoustical Society of America.

[115]  S. Khanna,et al.  Spectral characteristics of the responses of primary auditory-nerve fibers to amplitude-modulated signals , 1989, Hearing Research.

[116]  A. Rees,et al.  Neuronal responses to amplitude-modulated and pure-tone stimuli in the guinea pig inferior colliculus, and their modification by broadband noise. , 1989, The Journal of the Acoustical Society of America.

[117]  R A Reale,et al.  Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues. , 1990, Journal of neurophysiology.

[118]  D. O. Kim,et al.  Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized decerebrate cats to AM and pure tones: Analysis with autocorrelation/power-spectrum , 1990, Hearing Research.

[119]  O. W. Henson,et al.  The descending auditory pathway and acousticomotor systems: connections with the inferior colliculus , 1990, Brain Research Reviews.

[120]  T. Yin,et al.  Interaural time sensitivity in medial superior olive of cat. , 1990, Journal of neurophysiology.

[121]  G. Neuweiler Auditory adaptations for prey capture in echolocating bats. , 1990, Physiological reviews.

[122]  Robert D Frisina,et al.  Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement , 1990, Hearing Research.

[123]  N. Weinberger,et al.  Cholinergic modulation of responses to single tones produces tone‐specific receptive field alterations in cat auditory cortex , 1990, Synapse.

[124]  J. Mäkelä,et al.  Steady-state responses from the cat auditory cortex , 1990, Hearing Research.

[125]  Ian M. Winter,et al.  Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres , 1990, Hearing Research.

[126]  N. Kiang,et al.  Curious oddments of auditory-nerve studies , 1990, Hearing Research.

[127]  Robert D Frisina,et al.  Encoding of amplitude modulation in the gerbil cochlear nucleus: II. Possible neural mechanisms , 1990, Hearing Research.

[128]  Trevor Drew,et al.  Application of circular statistics to the study of neuronal discharge during locomotion , 1991, Journal of Neuroscience Methods.

[129]  Z. Wollberg,et al.  DISCRIMINATION OF COMMUNICATION CALLS IN THE SQUIRREL MONKEY: "CALL DETECTORS" OR "CELL ENSEMBLES"? , 1991, Journal of basic and clinical physiology and pharmacology.

[130]  C. Tsuchitani Binaural cues and signal processing in the superior olivary complex , 1991 .

[131]  R. Jenison,et al.  A dynamic model of the auditory periphery based on the responses of single auditory-nerve fibers , 1991 .

[132]  R. Altschuler,et al.  Neurobiology of hearing : the central auditory system , 1991 .

[133]  Jos J. Eggermont,et al.  Rate and synchronization measures of periodicity coding in cat primary auditory cortex , 1991, Hearing Research.

[134]  M. Taussig The Nervous System , 1991 .

[135]  Mario A. Ruggero,et al.  Physiology and Coding of Sound in the Auditory Nerve , 1992 .

[136]  Jos J. Eggermont,et al.  Stimulus induced and spontaneous rhythmic firing of single units in cat primary auditory cortex , 1992, Hearing Research.

[137]  D. Irvine Physiology of the Auditory Brainstem , 1992 .

[138]  M. F. Huerta,et al.  Inferior and Superior Colliculi , 1992 .

[139]  I. Schwartz The Superior Olivary Complex and Lateral Lemniscal Nuclei , 1992 .

[140]  R. Fay,et al.  The Mammalian auditory pathway : neurophysiology , 1992 .

[141]  Gerald Langner,et al.  Periodicity coding in the auditory system , 1992, Hearing Research.

[142]  Pascal Barone,et al.  Physiology of Thalamus and Cortex , 1992 .

[143]  Richard R. Fay,et al.  The Mammalian Auditory Pathway: Neuroanatomy , 1992, Springer Handbook of Auditory Research.

[144]  T. Yin,et al.  Responses to amplitude-modulated tones in the auditory nerve of the cat. , 1992, The Journal of the Acoustical Society of America.

[145]  S. Rosen Temporal information in speech: acoustic, auditory and linguistic aspects. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[146]  J. Winer The Functional Architecture of the Medial Geniculate Body and the Primary Auditory Cortex , 1992 .

[147]  M B Sachs,et al.  Neural encoding of single-formant stimuli in the cat. I. Responses of auditory nerve fibers. , 1993, Journal of neurophysiology.

[148]  Jos J. Eggermont,et al.  Differential effects of age on click-rate and amplitude modulation-frequency coding in primary auditory cortex of the cat , 1993, Hearing Research.

[149]  T. Blackstad,et al.  The central nucleus of the inferior colliculus in rat: A Golgi and computer reconstruction study of neuronal and laminar structure , 1993, The Journal of comparative neurology.

[150]  Min Wu,et al.  Neurons in the inferior colliculus, auditory cortex and pontine nuclei of the FM bat, Eptesicus fuscus respond to pulse repetition rate differently , 1993, Brain Research.

[151]  D. P. Phillips Neural Representation of Stimulus Times in the Primary Auditory Cortex a , 1993, Annals of the New York Academy of Sciences.

[152]  R. Batra,et al.  High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences. , 1993, Journal of neurophysiology.

[153]  J. Edeline,et al.  Basal forebrain stimulation facilitates tone-evoked responses in the auditory cortex of awake rat , 1993, Neuroscience.

[154]  G. K. Yates,et al.  Cochlear nerve fiber responses to amplitude-modulated stimuli: variations with spontaneous rate and other response characteristics. , 1993, Journal of neurophysiology.

[155]  Philip H Smith,et al.  Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: Evidence for delay lines to the medial superior olive , 1993, The Journal of comparative neurology.

[156]  W. Singer,et al.  Effects of Intracortical Infusion of Anticholinergic Drugs on Neuronal Plasticity in Kitten Striate Cortex , 1993, The European journal of neuroscience.

[157]  Nobuo Suga,et al.  After-discharges in the auditory cortex of the mustached bat: No oscillatory discharges for binding auditory information , 1994, Hearing Research.

[158]  C Trahiotis,et al.  Detection of interaural delay in high-frequency sinusoidally amplitude-modulated tones, two-tone complexes, and bands of noise. , 1994, The Journal of the Acoustical Society of America.

[159]  B C Moore,et al.  The critical modulation frequency and its relationship to auditory filtering at low frequencies. , 1994, The Journal of the Acoustical Society of America.

[160]  B. Grothe Interaction of excitation and inhibition in processing of pure tone and amplitude-modulated stimuli in the medial superior olive of the mustached bat. , 1994, Journal of neurophysiology.

[161]  M. Sachs,et al.  Neural encoding of single-formant stimuli in the cat. II. Responses of anteroventral cochlear nucleus units. , 1994, Journal of neurophysiology.

[162]  I. Nelken,et al.  Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli. , 1994, Journal of neurophysiology.

[163]  W. S. Rhode,et al.  Encoding of amplitude modulation in the cochlear nucleus of the cat. , 1994, Journal of neurophysiology.

[164]  J. Eggermont Temporal modulation transfer functions for AM and FM stimuli in cat auditory cortex. Effects of carrier type, modulating waveform and intensity , 1994, Hearing Research.

[165]  William S. Rhode,et al.  Temporal coding of 200% amplitude modulated signals in the ventral cochlear nucleus of cat , 1994, Hearing Research.

[166]  P. Müller-Preuss,et al.  Neural encoding of amplitude modulation within the auditory midbrain of squirrel monkeys , 1994, Hearing Research.

[167]  Roy D. Patterson,et al.  The sound of a sinusoid: Spectral models , 1994 .

[168]  R. Meddis,et al.  A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus. , 1994, The Journal of the Acoustical Society of America.

[169]  L H Carney,et al.  Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. , 1994, Journal of neurophysiology.

[170]  Michael B. Calford,et al.  Monaural inhibition in cat auditory cortex. , 1995, Journal of neurophysiology.

[171]  Adrian Rees,et al.  Laminar organization of frequency‐defined local axons within and between the inferior colliculi of the guinea pig , 1995, The Journal of comparative neurology.

[172]  W. Bialek,et al.  Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[173]  W. Warr Parallel Ascending Pathways from the Cochlear Nucleus: Neuroanatomical Evidence of Functional Specialization , 1995 .

[174]  W. S. Rhode Interspike intervals as a correlate of periodicity pitch in cat cochlear nucleus. , 1995, The Journal of the Acoustical Society of America.

[175]  J. Ostwald,et al.  Temporal Coding of Amplitude and Frequency Modulation in the Rat Auditory Cortex , 1995, The European journal of neuroscience.

[176]  Frédéric Berthommier,et al.  Neuronal correlates of perceptual amplitude-modulation detection , 1995, Hearing Research.

[177]  T. Yin,et al.  Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. , 1995, Journal of neurophysiology.

[178]  Hong-Bo Zhao,et al.  Processing of modulation frequency in the dorsal cochlear nucleus of the guinea pig: Amplitude modulated tones , 1995, Hearing Research.

[179]  M M Merzenich,et al.  Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. , 1995, Journal of neurophysiology.

[180]  R. Fay,et al.  Hearing by Bats , 1995, Springer Handbook of Auditory Research.

[181]  R V Shannon,et al.  Speech Recognition with Primarily Temporal Cues , 1995, Science.

[182]  Gerald Langner,et al.  Ontogenic development of periodicity coding in the inferior colliculus of the mongolian gerbil , 1995 .

[183]  M B Sachs,et al.  Transformation of temporal discharge patterns in a ventral cochlear nucleus stellate cell model: implications for physiological mechanisms. , 1995, Journal of neurophysiology.

[184]  J. Eggermont Representation of a voice onset time continuum in primary auditory cortex of the cat. , 1995, The Journal of the Acoustical Society of America.

[185]  William Morris Hartmann Chapter 1 – The Physical Description of Signals , 1995 .

[186]  M. Fenton Natural History and Biosonar Signals , 1995 .

[187]  C E Schreiner,et al.  Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. II. Repetition rate coding. , 1996, Journal of neurophysiology.

[188]  T. Dau,et al.  Intrinsic envelope fluctuations and modulation-detection thresholds for narrow-band noise carriers. , 1996, The Journal of the Acoustical Society of America.

[189]  M S Malmierca,et al.  Contribution of GABA- and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. , 1996, Journal of neurophysiology.

[190]  B. Delgutte,et al.  Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch. , 1996, Journal of neurophysiology.

[191]  S C McLoon,et al.  Nitric oxide and the developmental remodeling of retinal connections in the brain. , 1996, Progress in brain research.

[192]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[193]  S. Shamma,et al.  Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. , 1996, Journal of neurophysiology.

[194]  I. Winter,et al.  Frequency extent of two-tone facilitation in onset units in the ventral cochlear nucleus. , 1996, Journal of neurophysiology.

[195]  S. Shamma,et al.  Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra. , 1996, Journal of neurophysiology.

[196]  W. Shofner,et al.  Responses of ventral cochlear nucleus units in the chinchilla to amplitude modulation by low-frequency, two-tone complexes. , 1996, The Journal of the Acoustical Society of America.

[197]  E. Mugnaini,et al.  Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections , 1996, The Journal of comparative neurology.

[198]  T Houtgast,et al.  Effect of temporal modulation reduction on spectral contrasts in speech. , 1996, The Journal of the Acoustical Society of America.

[199]  P. Joris Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive. , 1996, Journal of neurophysiology.

[200]  D. D. Greenwood,et al.  Mechanical and "temporal" filtering as codeterminants of the response by cat primary fibers to amplitude-modulated signals. , 1996, The Journal of the Acoustical Society of America.

[201]  R. Batra,et al.  Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. II. Coincidence detection. , 1997, Journal of neurophysiology.

[202]  Stephen T. Neely,et al.  Signals, Sound, and Sensation , 1997 .

[203]  J J Eggermont,et al.  Firing rate and firing synchrony distinguish dynamic from steady state sound , 1997, Neuroreport.

[204]  R. Batra,et al.  Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. I. Heterogeneity of responses. , 1997, Journal of neurophysiology.

[205]  Christoph E. Schreiner,et al.  Perturbative M-Sequences for Auditory Systems Identification , 1997, NIPS.

[206]  E. Ağar,,et al.  Physiological-Morphologial Properties Of The Anteroventral Cochlear Nucleus , 1997 .

[207]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[208]  Josef Syka,et al.  Acoustical Signal Processing in the Central Auditory System , 1997, Springer US.

[209]  Hagai Attias,et al.  Coding of Naturalistic Stimuli by Auditory Midbrain Neurons , 1997, NIPS.

[210]  G. Langner,et al.  Representation of periodicity pitch in the primary auditory cortex of the Mongolian gerbil. , 1997, Acta oto-laryngologica. Supplementum.

[211]  C. Schreiner,et al.  Low-frequency oscillations of visual, auditory and somatosensory cortical neurons evoked by sensory stimulation. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[212]  B. Kollmeier,et al.  Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. , 1997, The Journal of the Acoustical Society of America.

[213]  P. Heil,et al.  Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography , 1997, Journal of Comparative Physiology A.

[214]  J. Eggermont,et al.  Autonomous cortical rhythms affect temporal modulation transfer functions , 1997, Neuroreport.

[215]  Torsten Daub Modeling auditory processing of amplitude modulation I. Detection and masking with narrow-band carriers , 1997 .

[216]  G. Langner,et al.  Neural processing and representation of periodicity pitch. , 1997, Acta oto-laryngologica. Supplementum.

[217]  A. Rees,et al.  Regularity of firing of neurons in the inferior colliculus. , 1997, Journal of neurophysiology.

[218]  Gerald Langner,et al.  Laminar fine structure of frequency organization in auditory midbrain , 1997, Nature.

[219]  G. Langner,et al.  Periodicity coding in the primary auditory cortex of the Mongolian gerbil (Merionesunguiculatus ): two different coding strategies for pitch and rhythm? , 1997, Journal of Comparative Physiology A.

[220]  T. Dau Modeling auditory processing of amplitude modulation , 1997 .

[221]  H R Wilson,et al.  Evolving Concepts of Spatial Channels in Vision: From Independence to Nonlinear Interactions , 1997, Perception.

[222]  B. Kollmeier,et al.  Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. , 1997, The Journal of the Acoustical Society of America.

[223]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[224]  Terrence R. Stanford,et al.  A neuronal population code for sound localization , 1997, Nature.

[225]  A. Rees,et al.  The Influence of Intrinsic Oscillations on the Encoding of Amplitude Modulation by Neurons in the Inferior Colliculus , 1997 .

[226]  L. Yang,et al.  Differential response properties to amplitude modulated signals in the dorsal nucleus of the lateral lemniscus of the mustache bat and the roles of GABAergic inhibition. , 1997, Journal of neurophysiology.

[227]  Hong-Bo Zhao,et al.  Temporal encoding and transmitting of amplitude and frequency modulations in dorsal cochlear nucleus , 1997, Hearing Research.

[228]  P. Poon,et al.  Single Cell Responses to AM Tones of Different Envelops at the Auditory Midbrain , 1997 .

[229]  T. Anderson,et al.  Binaural and spatial hearing in real and virtual environments , 1997 .

[230]  C. Micheyl,et al.  Medial olivocochlear efferent system in humans studied with amplitude-modulated tones. , 1997, Journal of neurophysiology.

[231]  M. Malmierca,et al.  Anatomic Evidence of a Three-Dimensional Mosaic Pattern of Tonotopic Organization in the Ventral Complex of the Lateral Lemniscus in Cat , 1998, The Journal of Neuroscience.

[232]  Philip H Smith,et al.  Temporal and Binaural Properties in Dorsal Cochlear Nucleus and Its Output Tract , 1998, The Journal of Neuroscience.

[233]  M Steinschneider,et al.  Click train encoding in primary auditory cortex of the awake monkey: evidence for two mechanisms subserving pitch perception. , 1998, The Journal of the Acoustical Society of America.

[234]  D. McAlpine,et al.  Convergent Input from Brainstem Coincidence Detectors onto Delay-Sensitive Neurons in the Inferior Colliculus , 1998, The Journal of Neuroscience.

[235]  J. Eggermont Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. , 1998, Journal of neurophysiology.

[236]  C. D. Geisler,et al.  From Sound to Synapse: Physiology of the Mammalian Ear , 1998 .

[237]  T. Yin,et al.  Envelope coding in the lateral superior olive. III. Comparison with afferent pathways. , 1998, Journal of neurophysiology.

[238]  Alan R. Palmer,et al.  Psychophysical and Physiological Advances in Hearing , 1998 .

[239]  M. Kilgard,et al.  Plasticity of temporal information processing in the primary auditory cortex , 1998, Nature Neuroscience.

[240]  Philip H Smith,et al.  Coincidence Detection in the Auditory System 50 Years after Jeffress , 1998, Neuron.

[241]  W. O'Neill,et al.  Age-Related Alteration in Processing of Temporal Sound Features in the Auditory Midbrain of the CBA Mouse , 1998, The Journal of Neuroscience.

[242]  R. M. Burger,et al.  Analysis of the role of inhibition in shaping responses to sinusoidally amplitude-modulated signals in the inferior colliculus. , 1998, Journal of neurophysiology.

[243]  E. Covey,et al.  Processing of sinusoidally frequency modulated signals in the nuclei of the lateral lemniscus of the big brown bat, Eptesicus fuscus , 1998, Hearing Research.

[244]  M. Merzenich,et al.  Optimizing sound features for cortical neurons. , 1998, Science.

[245]  R. Batra,et al.  Axons from Anteroventral Cochlear Nucleus that Terminate in Medial Superior Olive of Cat: Observations Related to Delay Lines , 1999, The Journal of Neuroscience.

[246]  R. Batra,et al.  Coding of Sound Envelopes by Inhibitory Rebound in Neurons of the Superior Olivary Complex in the Unanesthetized Rabbit , 1999, The Journal of Neuroscience.

[247]  B. Kollmeier,et al.  Within-channel cues in comodulation masking release (CMR): experiments and model predictions using a modulation-filterbank model. , 1999, The Journal of the Acoustical Society of America.

[248]  P A Fuchs,et al.  Mechanisms of hair cell tuning. , 1999, Annual review of physiology.

[249]  G. Langner,et al.  Auditory cortical responses to amplitude modulations with spectra above frequency receptive fields: evidence for wide spectral integration , 1999, Journal of Comparative Physiology A.

[250]  J. Laver,et al.  The handbook of phonetic sciences , 1999 .

[251]  Israel Nelken,et al.  Responses of auditory-cortex neurons to structural features of natural sounds , 1999, Nature.

[252]  M. Hauser,et al.  The design of animal communication , 1999 .

[253]  A Kohlrausch,et al.  Intrinsic envelope fluctuations and modulation-detection thresholds for narrow-band noise carriers. , 1999, The Journal of the Acoustical Society of America.

[254]  J J Eggermont,et al.  The Magnitude and Phase of Temporal Modulation Transfer Functions in Cat Auditory Cortex , 1999, The Journal of Neuroscience.

[255]  G. Green,et al.  Disorders of human complex sound processing , 1999 .

[256]  D C Fitzpatrick,et al.  Neural Sensitivity to Interaural Time Differences: Beyond the Jeffress Model , 2000, The Journal of Neuroscience.

[257]  C. Schreiner,et al.  Sequence sensitivity of neurons in cat primary auditory cortex. , 2000, Cerebral cortex.

[258]  A R Palmer,et al.  Modulation and task effects in auditory processing measured using fMRI , 2000, Human brain mapping.

[259]  C H Keller,et al.  Representation of temporal features of complex sounds by the discharge patterns of neurons in the owl's inferior colliculus. , 2000, Journal of neurophysiology.

[260]  M Steinschneider,et al.  Complex tone processing in primary auditory cortex of the awake monkey. I. Neural ensemble correlates of roughness. , 2000, The Journal of the Acoustical Society of America.

[261]  R. Patterson,et al.  The responses of single units in the ventral cochlear nucleus of the guinea pig to damped and ramped sinusoids , 2000, Hearing Research.

[262]  Richard S. J. Frackowiak,et al.  Representation of the temporal envelope of sounds in the human brain. , 2000, Journal of neurophysiology.

[263]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[264]  D. Oliver,et al.  Identification of cell types in brain slices of the inferior colliculus , 2000, Neuroscience.

[265]  B C Moore,et al.  Effects of relative phase and frequency spacing on the detection of three-component amplitude modulation. , 2000, The Journal of the Acoustical Society of America.

[266]  R. Patterson,et al.  Frontal processing and auditory perception , 2000, Neuroreport.

[267]  P. Joris,et al.  Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[268]  M. Semple,et al.  Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. , 2000, Journal of neurophysiology.

[269]  T. Picton,et al.  Human auditory steady-state responses to amplitude-modulated tones: phase and latency measurements , 2000, Hearing Research.

[270]  C Pantev,et al.  A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. , 2000, The Journal of the Acoustical Society of America.

[271]  Anthony N. Burkitt,et al.  Delay analysis in the auditory brainstem of the rat: comparison with click latency , 2001, Hearing Research.

[272]  P. Heil Representation of Sound Onsets in the Auditory System , 2001, Audiology and Neurotology.

[273]  L. Robles,et al.  Mechanics of the mammalian cochlea. , 2001, Physiological reviews.

[274]  P. Heil,et al.  Temporal Integration of Sound Pressure Determines Thresholds of Auditory-Nerve Fibers , 2001, The Journal of Neuroscience.

[275]  Lee M. Miller,et al.  Functional Convergence of Response Properties in the Auditory Thalamocortical System , 2001, Neuron.

[276]  Sue L. Denham,et al.  An Investigation into the Role of Cortical Synaptic Depression in Auditory Processing , 2001, Emergent Neural Computational Architectures Based on Neuroscience.

[277]  D. Caspary,et al.  Responses of young and aged rat inferior colliculus neurons to sinusoidally amplitude modulated stimuli , 2001, Hearing Research.

[278]  Xiaoqin Wang,et al.  Neural representations of temporally asymmetric stimuli in the auditory cortex of awake primates. , 2001, Journal of neurophysiology.

[279]  D. Oliver,et al.  Distinct K Currents Result in Physiologically Distinct Cell Types in the Inferior Colliculus of the Rat , 2001, The Journal of Neuroscience.

[280]  B. Delgutte,et al.  Neural coding of the temporal envelope of speech : Relation to modulation transfer functions , 2001 .

[281]  R. Frisina Subcortical neural coding mechanisms for auditory temporal processing , 2001, Hearing Research.

[282]  Jim Austin,et al.  Emergent Neural Computational Architectures Based on Neuroscience: Towards Neuroscience-Inspired Computing , 2001 .

[283]  C. Schreiner,et al.  Erratum: Sensory input directs spatial and temporal plasticity in primary auditory cortex (Journal of Neurophysiology (July 2001) 86 (326-338)) , 2001 .

[284]  I. Winter,et al.  Temporal representation of iterated rippled noise as a function of delay and sound level in the ventral cochlear nucleus. , 2001, Journal of neurophysiology.

[285]  E Ahissar,et al.  Speech comprehension is correlated with temporal response patterns recorded from auditory cortex , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[286]  R. Patterson,et al.  The responses of single units in the inferior colliculus of the guinea pig to damped and ramped sinusoids , 2001, Hearing Research.

[287]  H. Zhang,et al.  AMPA and NMDA receptors regulate responses of neurons in the rat's inferior colliculus. , 2001, Journal of neurophysiology.

[288]  M. Harms,et al.  Sound repetition rate in the human auditory pathway: representations in the waveshape and amplitude of fMRI activation. , 2002, Journal of neurophysiology.

[289]  Time for analysis , 2002, Nature.

[290]  C. Micheyl,et al.  Auditory stream segregation on the basis of amplitude-modulation rate. , 2002, The Journal of the Acoustical Society of America.

[291]  Tom C. T. Yin,et al.  Neural Mechanisms of Encoding Binaural Localization Cues in the Auditory Brainstem , 2002 .

[292]  Bertrand Delgutte,et al.  Auditory Neural Processing of Speech , 2002 .

[293]  Lee M. Miller,et al.  Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. , 2002, Journal of neurophysiology.

[294]  C. Schreiner,et al.  Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. , 2002, Journal of neurophysiology.

[295]  Richard R. Fay,et al.  Integrative Functions in the Mammalian Auditory Pathway , 2002, Springer Handbook of Auditory Research.

[296]  Henry Simon,et al.  Age-related alterations in the neural coding of envelope periodicities. , 2002, Journal of neurophysiology.

[297]  Xiaoqin Wang,et al.  Neural representations of sinusoidal amplitude and frequency modulations in the primary auditory cortex of awake primates. , 2002, Journal of neurophysiology.

[298]  Zachary M. Smith,et al.  Chimaeric sounds reveal dichotomies in auditory perception , 2002, Nature.

[299]  J. Eggermont Temporal modulation transfer functions in cat primary auditory cortex: separating stimulus effects from neural mechanisms. , 2002, Journal of neurophysiology.

[300]  Christoph E Schreiner,et al.  Functional architecture of auditory cortex , 2002, Current Opinion in Neurobiology.

[301]  Guang-Di Chen,et al.  Responses of Chinchilla Inferior Colliculus Neurons to Amplitude-Modulated Tones with Different Envelopes , 2002, Journal of the Association for Research in Otolaryngology.

[302]  Larry F Hughes,et al.  GABAergic inputs shape responses to amplitude modulated stimuli in the inferior colliculus , 2002, Hearing Research.

[303]  Christoph E. Schreiner,et al.  Representation of CV-sounds in cat primary auditory cortex: intensity dependence , 2003, Speech Commun..

[304]  P. Joris Interaural Time Sensitivity Dominated by Cochlea-Induced Envelope Patterns , 2003, The Journal of Neuroscience.

[305]  N. Suga,et al.  Auditory System , 2020, Definitions.

[306]  I. Nelken,et al.  Processing of low-probability sounds by cortical neurons , 2003, Nature Neuroscience.

[307]  E. Young,et al.  THE COCHLEAR NUCLEUS , 2003 .

[308]  N. Cant,et al.  Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei , 2003, Brain Research Bulletin.

[309]  Christoph E Schreiner,et al.  Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. , 2003, Journal of neurophysiology.

[310]  A. Palmer Encoding of rapid amplitude fluctuations by cochlear-nerve fibres in the guinea-pig , 1982, Archives of oto-rhino-laryngology.

[311]  P. Müller-Preuss,et al.  Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds , 1996, Experimental Brain Research.

[312]  D. P. Phillips,et al.  Responses of single neurons in cat auditory cortex to time-varying stimuli: linear amplitude modulations , 2004, Experimental Brain Research.

[313]  H. Funkenstein,et al.  The effect of species-specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey (Saimiri sciureus) , 1973, Experimental Brain Research.

[314]  Joseph P. Walton,et al.  Dorsal cochlear nucleus single neurons can enhance temporal processing capabilities in background noise , 2004, Experimental Brain Research.

[315]  J. Edeline,et al.  Transient and prolonged facilitation of tone-evoked responses induced by basal forebrain stimulations in the rat auditory cortex , 2004, Experimental Brain Research.

[316]  C. Schreiner,et al.  Thalamocortical transformation of responses to complex auditory stimuli , 2004, Experimental Brain Research.

[317]  P. Müller-Preuss On the mechanisms of call coding through auditory neurons in the squirrel monkey , 2004, European archives of psychiatry and neurological sciences.

[318]  A. Aertsen,et al.  The Spectro-Temporal Receptive Field , 1981, Biological Cybernetics.

[319]  R. Frisina,et al.  Differential encoding of rapid changes in sound amplitude by second-order auditory neurons , 2004, Experimental Brain Research.

[320]  R. L. Smith,et al.  Adaptation in auditory-nerve fibers: A revised model , 1982, Biological Cybernetics.

[321]  H. Schaible,et al.  Convergent inputs from articular, cutaneous and muscle receptors onto ascending tract cells in the cat spinal cord , 2004, Experimental Brain Research.

[322]  P. Müller-Preuss,et al.  Processing of amplitude modulated sounds in the medial geniculate body of squirrel monkeys , 2004, Experimental Brain Research.

[323]  C. J. Condon,et al.  Neurons with different temporal firing patterns in the inferior colliculus of the little brown bat differentially process sinusoidal amplitude-modulated signals , 1996, Journal of Comparative Physiology A.

[324]  E. Rouiller,et al.  Neurons sensitive to narrow ranges of repetitive acoustic transients in the medial geniculate body of the cat , 2004, Experimental Brain Research.

[325]  Masao Maekawa,et al.  The effect of pulse repetition rate on the delay sensitivity of neurons in the auditory cortex of the FM bat, Myotis lucifugus , 2004, Journal of Comparative Physiology A.

[326]  Marianne Vater,et al.  Single unit responses in cochlear nucleus of horseshoe bats to sinusoidal frequency and amplitude modulated signals , 1982, Journal of comparative physiology.

[327]  G. Schuller,et al.  Natural ultrasonic echoes from wing beating insects are encoded by collicular neurons in the CF-FM bat,Rhinolophus ferrumequinum , 2004, Journal of Comparative Physiology A.

[328]  R. C. Emerson,et al.  ON-OFF units in the mustached bat inferior colliculus are selective for transients resembling “acoustic glint” from fluttering insect targets , 2004, Experimental Brain Research.

[329]  H. Funkenstein,et al.  Responses to acoustic stimuli of units in the auditory cortex of awake squirrel monkeys , 1973, Experimental Brain Research.

[330]  T. I. Grigor'eva,et al.  Role of the medial geniculate body in the production of conditioned reflexes to amplitude-modulated stimuli in rats , 2005, Neuroscience and Behavioral Physiology.