The effects of rM-CSF and rIL-6 therapy on immunosuppressed antiorthostatically suspended mice.

Antiorthostatically suspended mice had suppressed macrophage development in both unloaded and loaded bones, indicating a systemic effect. Bone marrow cells from those mice secreted less macrophage colony-stimulating factor (M-CSF) and interleukin-6 (IL-6) than did control mice. Because M-CSF and IL-6 are important to bone marrow macrophage maturation, we formulated the hypothesis that suppressed macrophage development occurred as a result of the depressed levels of either M-CSF or IL-6. To test the hypothesis, mice were administered recombinant M-CSF or IL-6 intraperitoneally. We showed that recombinant M-CSF therapy, but not recombinant IL-6 therapy, reversed the suppressive effects of antiorthostatic suspension on macrophage development. These data suggest that bone marrow cells that produce M-CSF are affected by antiorthostatic suspension and may contribute to the inhibited maturation of bone marrow macrophage progenitors.