A comprehensive understanding of disintegrants and disintegration quantification techniques: From the perspective of tablet microstructure

[1]  P. Kleinebudde,et al.  Evaluation of binders in twin-screw wet granulation - Optimal combination of binder and disintegrant. , 2023, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[2]  A. Y. Chaerunisaa,et al.  Review on Modification of Glucomannan as an Excipient in Solid Dosage Forms , 2022, Polymers.

[3]  Jitendra Pandey,et al.  Formulation of Ebastine Fast-Disintegrating Tablet Using Coprocessed Superdisintegrants and Evaluation of Quality Control Parameters , 2022, TheScientificWorldJournal.

[4]  J. Rantanen,et al.  A generalized image analytical algorithm for investigating tablet disintegration. , 2022, International journal of pharmaceutics.

[5]  M. Bayor,et al.  Pharmaceutical Assessment of Melia azedarach Gum as a Binder and Disintegrant in Immediate-Release Tablets , 2022, TheScientificWorldJournal.

[6]  D. Lavrich,et al.  Disintegration Testing Augmented by Computer Vision Technology. , 2022, International journal of pharmaceutics.

[7]  P. Janssen,et al.  Technical insight into potential functional-related characteristics (FRCs) of sodium starch glycolate, croscarmellose sodium and crospovidone , 2022, Journal of Drug Delivery Science and Technology.

[8]  Xiao Lin,et al.  [Improvement on compactibility of the alcoholic extract of Zingiberis Rhizoma by co-spray drying with HPMC]. , 2022, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.

[9]  A. Kwade,et al.  Tablet Disintegration and Dispersion under In Vivo-like Hydrodynamic Conditions , 2022, Pharmaceutics.

[10]  H. Rodilla,et al.  Terahertz Frequency Domain Sensing for Fast Porosity Measurement of Pharmaceutical Tablets. , 2021, International journal of pharmaceutics.

[11]  Chidambaram Kumarappan,et al.  Mucilage of Coccinia grandis as an Efficient Natural Polymer-Based Pharmaceutical Excipient , 2021, Polymers.

[12]  A. Kwade,et al.  Tablet formulation development focusing on the functional behaviour of water uptake and swelling , 2021, International journal of pharmaceutics: X.

[13]  H. Kaur,et al.  New insights into the disintegration mechanism and disintegration profiling of rapidly disintegrating tablets (RDTs) by thermal imaging. , 2021, International journal of pharmaceutics.

[14]  T. Kanazawa,et al.  Characterization of the viscoelasticity of disintegrants by dynamic rheological analysis , 2021 .

[15]  P. Royall,et al.  Digital Image Disintegration Analysis: a Novel Quality Control Method for Fast Disintegrating Tablets , 2021, AAPS PharmSciTech.

[16]  E. Rédai,et al.  Pharmacotechnical and analytical preformulation studies for cannabidiol orodispersible tablets , 2021, Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society.

[17]  A. Narang,et al.  Modeling the Tablet Disintegration Process Using the Finite Difference Method. , 2021, Journal of pharmaceutical sciences.

[18]  M. Bayor,et al.  Potential and Comparative Tablet Disintegrant Properties of Pectin Obtained from Five Okra Genotypes in Ghana , 2021, Scientifica.

[19]  Z. Ahmad,et al.  A Review of Emerging Technologies Enabling Improved Solid Oral Dosage Form Manufacturing and Processing. , 2021, Advanced drug delivery reviews.

[20]  Sonja Bauhuber,et al.  Alginates as tablet disintegrants: understanding disintegration mechanisms and defining ranges of applications. , 2021, International journal of pharmaceutics.

[21]  Julian Quodbach,et al.  Advancing the understanding of the tablet disintegration phenomenon - an update on recent studies. , 2021, International journal of pharmaceutics.

[22]  A. Kwade,et al.  An Improved Method for the Simultaneous Determination of Water Uptake and Swelling of Tablets. , 2021, International journal of pharmaceutics.

[23]  A. Bansal,et al.  Co-processing of small molecule excipients with polymers to improve functionality , 2021, Expert opinion on drug delivery.

[24]  F. Štěpánek,et al.  Microstructure based simulation of the disintegration and dissolution of immediate release pharmaceutical tablets , 2021 .

[25]  F. Štěpánek,et al.  Frequency analysis of stress relaxation patterns reveals the effect of formulation and process history on tablet disintegration , 2020 .

[26]  Lin Xiao,et al.  [Study on improvement and mechanism of tableting properties of porous Fagopyri Dibotryis Rhizoma powders]. , 2020, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.

[27]  H. Cui,et al.  Terahertz detection of porosity and porous microstructure in pharmaceutical tablets: A review. , 2020, International journal of pharmaceutics.

[28]  Blair F. Johnston,et al.  Quantification of Swelling Characteristics of Pharmaceutical Particles. , 2020, International journal of pharmaceutics.

[29]  A. Crean,et al.  Application of percolation threshold to disintegration and dissolution of ibuprofen tablets with different microcrystalline cellulose grades. , 2020, International journal of pharmaceutics.

[30]  F. Štěpánek,et al.  Investigation of tablet disintegration pathways by the combined use of magnetic resonance imaging, texture analysis and static light scattering. , 2020, International journal of pharmaceutics.

[31]  B. Alonso,et al.  Development of alginate esters as novel multifunctional excipients for direct compression. , 2020, Carbohydrate polymers.

[32]  Xiao Lin,et al.  The Fundamental and Functional Property Differences Between HPMC and PVP Co-Processed Herbal Particles Prepared by Fluid Bed Coating , 2020, AAPS PharmSciTech.

[33]  Liang Zhong,et al.  Trends-process analytical technology in solid oral dosage manufacturing. , 2020, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[34]  P. Kleinebudde,et al.  Functionality of disintegrants with different mechanisms after roll compaction. , 2020, International journal of pharmaceutics.

[35]  T. Rades,et al.  Simultaneous Investigation of the Liquid Transport and Swelling Performance during Tablet Disintegration. , 2020, International journal of pharmaceutics.

[36]  Tsadkan Gebremeskel Haile,et al.  Evaluation of Acid-Modified Ethiopian Potato (Plectranthus edulis) Starch as Directly Compressible Tablet Excipient , 2020, BioMed research international.

[37]  Ashutosh Kumar Singh,et al.  Fast Dissolving/Disintegrating Dosage Forms of Natural Active Compounds and Alternative Medicines. , 2020, Recent patents on drug delivery & formulation.

[38]  S. Lawrence,et al.  The Sound of Tablets during Coating Erosion, Disintegration, Deaggregation and Dissolution. , 2020, International journal of pharmaceutics.

[39]  L. Leclercq,et al.  Structure-Properties Relationship in the Evaluation of Alginic Acid Functionality for Tableting , 2020, AAPS PharmSciTech.

[40]  T. De Beer,et al.  New Advances in the Characterization of Lyophilised Orally Disintegration Tablets. , 2020, International journal of pharmaceutics.

[41]  N. Fotaki,et al.  Surface dissolution UV Imaging for characterization of superdisintegrants and their impact on drug dissolution. , 2020, International journal of pharmaceutics.

[42]  Bing Xu,et al.  [Real time release testing of disintegration time of uncoated Tianshu Tablets]. , 2020, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.

[43]  Lorina Bisharat,et al.  Swelling of Zein Matrix Tablets Benchmarked against HPMC and Ethylcellulose: Challenging the Matrix Performance by the Addition of Co-Excipients , 2019, Pharmaceutics.

[44]  Yasmín Daglio,et al.  Paramylon and synthesis of its ionic derivatives: Applications as pharmaceutical tablet disintegrants and as colloid flocculants. , 2019, Carbohydrate research.

[45]  B. Skalsky,et al.  A rapid In-Process Control (IPC) test to monitor the functionality of taste masking polymer coatings using Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS). , 2019, International journal of pharmaceutics.

[46]  Lorina Bisharat,et al.  Evaluation of the Disintegration Action of Soy Polysaccharide by Image Analysis , 2019, AAPS PharmSciTech.

[47]  Amjad Khan Optimization of the process variables of roller compaction, on the basis of granules characteristics (flow, mechanical strength, and disintegration behavior): an application of SeDeM-ODT expert system , 2019, Drug development and industrial pharmacy.

[48]  M. Otsuka,et al.  A novel tablet disintegrant from Ocimum canum seeds , 2019, Journal of Drug Delivery Science and Technology.

[49]  B. Bataille,et al.  Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression, Part 2: Tableting Properties. , 2019, Journal of pharmaceutical sciences.

[50]  A. Badwan,et al.  Preparation and characterization of co-processed starch/MCC/chitin hydrophilic polymers onto magnesium silicate , 2019, Pharmaceutical development and technology.

[51]  S. Itai,et al.  Development of muco-adhesive orally disintegrating tablets containing tamarind gum-coated tea powders for oral care , 2019, International journal of pharmaceutics: X.

[52]  R. Salehi,et al.  Leucine-grafted starch as a new superdisintegrant for the formulation of domperidone tablets , 2019, Journal of Drug Delivery Science and Technology.

[53]  G. Walker,et al.  Effect of lignin on the release rate of acetylsalicylic acid tablets. , 2019, International journal of biological macromolecules.

[54]  I. Ermolina,et al.  Application of Texture Analysis Technique in Formulation Development of Lyophilized Orally Disintegrating Tablets Containing Mannitol, Polyvinylpyrrolidone and Amino Acids , 2019, AAPS PharmSciTech.

[55]  D. Vetchý,et al.  Co-processed excipients for direct compression of tablets. , 2018, Ceska a Slovenska farmacie : casopis Ceske farmaceuticke spolecnosti a Slovenske farmaceuticke spolecnosti.

[56]  J. Huwyler,et al.  Modeling of Disintegration and Dissolution Behavior of Mefenamic Acid Formulation Using Numeric Solution of Noyes-Whitney Equation with Cellular Automata on Microtomographic and Algorithmically Generated Surfaces , 2018, Pharmaceutics.

[57]  P. Heng,et al.  A study of the impact of excipient shielding on initial drug release using UV imaging , 2018, International journal of pharmaceutics.

[58]  F. Štěpánek,et al.  Probing the early stages of tablet disintegration by stress relaxation measurement , 2018, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[59]  M. Brendel,et al.  Dissolution or disintegration – substitution of dissolution by disintegration testing for a fixed dose combination product , 2018, Drug development and industrial pharmacy.

[60]  Lalduhsanga Pachuau,et al.  Taro starch (Colocasia esculenta) and citric acid modified taro starch as tablet disintegrating agents. , 2018, International journal of biological macromolecules.

[61]  F. Quignard,et al.  Evaluation of the super disintegrant functionnalities of alginic acid and calcium alginate for the design of orodispersible mini tablets. , 2018, Carbohydrate polymers.

[62]  Yan Su,et al.  Deep learning for in vitro prediction of pharmaceutical formulations , 2018, Acta pharmaceutica Sinica. B.

[63]  C. Muehlenfeld,et al.  Competing for water: A new approach to understand disintegrant performance , 2018, International journal of pharmaceutics.

[64]  Zhenfeng Wu,et al.  A Novel Forming Method of Traditional Chinese Medicine Dispersible Tablets to Achieve Rapid Disintegration Based on the Powder Modification Principle , 2018, Scientific Reports.

[65]  Xiao Lin,et al.  Development on porous particles of Pueraria lobatae Radix for improving its compactibility and dissolution , 2018, RSC advances.

[66]  Lorina Bisharat,et al.  A Simple and Inexpensive Image Analysis Technique to Study the Effect of Disintegrants Concentration and Diluents Type on Disintegration. , 2018, Journal of pharmaceutical sciences.

[67]  Xiao Lin,et al.  [Scaled-up production and application of co-processed excipient mannitol-HPMC in traditional Chinese medicine]. , 2018, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.

[68]  M. Miñarro,et al.  The role of SeDeM for characterizing the active substance and polyvinyilpyrrolidone eliminating metastable forms in an oral lyophilizate—A preformulation study , 2018, PloS one.

[69]  B. Bataille,et al.  Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression. , 2018, Journal of pharmaceutical sciences.

[70]  I. Tomuță,et al.  Assessment of oral formulation‐dependent characteristics of orodispersible tablets using texture profiles and multivariate data analysis , 2018, Journal of pharmaceutical and biomedical analysis.

[71]  Sanming Li,et al.  Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration , 2018, Drug development and industrial pharmacy.

[72]  A. Kong,et al.  Correlation of dissolution and disintegration results for an immediate-release tablet. , 2018, Journal of pharmaceutical and biomedical analysis.

[73]  Xiaoshan Li,et al.  Predicting oral disintegrating tablet formulations by neural network techniques , 2018, Asian journal of pharmaceutical sciences.

[74]  Yoshinori Onuki,et al.  A comparative study of disintegration actions of various disintegrants using Kohonen's self-organizing maps , 2018 .

[75]  S. Kazarian,et al.  Recent advances in the applications of vibrational spectroscopic imaging and mapping to pharmaceutical formulations. , 2017, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[76]  S. Wren,et al.  Mechanistic understanding of the link between Sodium Starch Glycolate properties and the performance of tablets made by wet granulation. , 2017, International journal of pharmaceutics.

[77]  K. Ofori-Kwakye,et al.  Evaluation of the Disintegrant Properties of Native Starches of Five New Cassava Varieties in Paracetamol Tablet Formulations , 2017, Journal of pharmaceutics.

[78]  B. Bataille,et al.  Chitin's Functionality as a Novel Disintegrant: Benchmarking Against Commonly Used Disintegrants in Different Physicochemical Environments. , 2017, Journal of pharmaceutical sciences.

[79]  D. Markl,et al.  Mathematical modelling of liquid transport in swelling pharmaceutical immediate release tablets. , 2017, International journal of pharmaceutics.

[80]  E. Sipos,et al.  Application of SeDeM expert systems in preformulation studies of pediatric ibuprofen ODT tablets , 2017, Acta pharmaceutica.

[81]  K. Peiponen,et al.  Optics-based compressibility parameter for pharmaceutical tablets obtained with the aid of the terahertz refractive index. , 2017, International journal of pharmaceutics.

[82]  R. Löbenberg,et al.  Justification of disintegration testing beyond current FDA criteria using in vitro and in silico models , 2017, Drug design, development and therapy.

[83]  Catherine Tuleu,et al.  The Milky Way: paediatric milk‐based dispersible tablets prepared by direct compression – a proof‐of‐concept study , 2017, The Journal of pharmacy and pharmacology.

[84]  P. Rathi,et al.  Kozeny–Carman permeability relationship with disintegration process predicted from early dissolution profiles of immediate release tablets , 2017, Drug development and industrial pharmacy.

[85]  D. Markl,et al.  A Review of Disintegration Mechanisms and Measurement Techniques , 2017, Pharmaceutical Research.

[86]  Daniel Markl,et al.  Non-destructive Determination of Disintegration Time and Dissolution in Immediate Release Tablets by Terahertz Transmission Measurements , 2017, Pharmaceutical Research.

[87]  T Flanagan,et al.  Biopharmaceutical aspects and implications of excipient variability in drug product performance , 2017, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[88]  Lalduhsanga Pachuau,et al.  Physicochemical and disintegrant properties of glutinous rice starch of Mizoram, India. , 2017, International journal of biological macromolecules.

[89]  Parind Mahendrakumar Desai,et al.  Review of Disintegrants and the Disintegration Phenomena. , 2016, Journal of pharmaceutical sciences.

[90]  K. Peiponen,et al.  Terahertz study on porosity and mass fraction of active pharmaceutical ingredient of pharmaceutical tablets. , 2016, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[91]  A. Mohammed,et al.  A pragmatic approach for engineering porous mannitol and mechanistic evaluation of particle performance. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[92]  K. Peiponen,et al.  Estimation of Young's modulus of pharmaceutical tablet obtained by terahertz time-delay measurement. , 2015, International journal of pharmaceutics.

[93]  Juraj Sibik,et al.  The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants , 2015, Journal of pharmaceutical sciences.

[94]  M. Meireles,et al.  Physicochemical properties, modifications and applications of starches from different botanical sources , 2015 .

[95]  C. Tuleu,et al.  Characterising the disintegration properties of tablets in opaque media using texture analysis. , 2015, International journal of pharmaceutics.

[96]  Peter Kleinebudde,et al.  A critical review on tablet disintegration , 2015, Pharmaceutical development and technology.

[97]  J. Zeitler,et al.  Diffusion and Swelling Measurements in Pharmaceutical Powder Compacts Using Terahertz Pulsed Imaging , 2015, Journal of pharmaceutical sciences.

[98]  Kai-Erik Peiponen,et al.  Non-contact weight measurement of flat-faced pharmaceutical tablets using terahertz transmission pulse delay measurements. , 2014, International journal of pharmaceutics.

[99]  P. Kleinebudde,et al.  Assessment of disintegrant efficacy with fractal dimensions from real-time MRI. , 2014, International journal of pharmaceutics.

[100]  Peter Kleinebudde,et al.  A new apparatus for real-time assessment of the particle size distribution of disintegrating tablets. , 2014, Journal of pharmaceutical sciences.

[101]  B. Evrard,et al.  Microcrystalline cellulose, a direct compression binder in a quality by design environment--a review. , 2014, International journal of pharmaceutics.

[102]  Peter Kleinebudde,et al.  Systematic classification of tablet disintegrants by water uptake and force development kinetics , 2014, The Journal of pharmacy and pharmacology.

[103]  J. Ticó,et al.  New classification of directly compressible (DC) excipients in function of the SeDeM Diagarm Expert System. , 2014, International journal of pharmaceutics.

[104]  C. Liew,et al.  Functionality of Disintegrants and Their Mixtures in Enabling Fast Disintegration of Tablets by a Quality by Design Approach , 2014, AAPS PharmSciTech.

[105]  H. Pawar,et al.  Recently Investigated Natural Gums and Mucilages as Pharmaceutical Excipients: An Overview , 2014, Journal of pharmaceutics.

[106]  Zhenfeng Wu,et al.  [Study on process and principle of lactose grinding modification to decrease hygroscopic of Rhodiolae Crenulatae Radix et Rhizoma extract]. , 2014, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.

[107]  Montserrat Miñarro,et al.  SeDeM expert system a new innovator tool to develop pharmaceutical forms , 2014, Drug development and industrial pharmacy.

[108]  F. Štěpánek,et al.  DEM simulation of drug release from structurally heterogeneous swelling tablets , 2013 .

[109]  J. Siepmann,et al.  Mathematical modeling of drug dissolution. , 2013, International journal of pharmaceutics.

[110]  Jukka Rantanen,et al.  Real-time dissolution behavior of furosemide in biorelevant media as determined by UV imaging , 2013, Pharmaceutical development and technology.

[111]  Go Kimura,et al.  An attempt to calculate in silico disintegration time of tablets containing mefenamic acid, a low water-soluble drug. , 2013, Journal of pharmaceutical sciences.

[112]  R. Zelkó,et al.  Prediction of oral disintegration time of fast disintegrating tablets using texture analyzer and computational optimization. , 2013, International journal of pharmaceutics.

[113]  M. Khan,et al.  Process analytical technology to understand the disintegration behavior of alendronate sodium tablets. , 2013, Journal of pharmaceutical sciences.

[114]  Michael J. Hounslow,et al.  A novel method to quantify tablet disintegration , 2013 .

[115]  F. Štěpánek,et al.  Formulation design space analysis for drug release from swelling polymer tablets , 2013 .

[116]  Parind Mahendrakumar Desai,et al.  Understanding disintegrant action by visualization. , 2012, Journal of pharmaceutical sciences.

[117]  Montserrat Miñarro,et al.  Predicting orally disintegrating tablets formulations of ibuprophen tablets: an application of the new SeDeM-ODT expert system. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[118]  J. Krüse,et al.  Principles and applications of broadband acoustic resonance dissolution spectroscopy (BARDS): a sound approach for the analysis of compounds. , 2012, Analytical chemistry.

[119]  F. Štěpánek,et al.  Modelling of pharmaceutical tablet swelling and dissolution using discrete element method , 2012 .

[120]  David M. Wilson,et al.  Linking Dissolution to Disintegration in Immediate Release Tablets Using Image Analysis and a Population Balance Modelling Approach , 2011, Pharmaceutical Research.

[121]  Frantisek Stepánek,et al.  Microstructure-based mathematical modelling and spectroscopic imaging of tablet dissolution , 2011, Comput. Chem. Eng..

[122]  A. Mirani,et al.  Direct compression high functionality excipient using coprocessing technique: a brief review. , 2011, Current drug delivery.

[123]  A. Barba,et al.  Controlled release from hydrogel-based solid matrices. A model accounting for water up-take, swelling and erosion. , 2011, International journal of pharmaceutics.

[124]  Carrie A. Coutant,et al.  In vitro monitoring of dissolution of an immediate release tablet by focused beam reflectance measurement. , 2010, Molecular pharmaceutics.

[125]  L. Gladden,et al.  Quantitative ultra-fast MRI of HPMC swelling and dissolution. , 2010, Journal of pharmaceutical sciences.

[126]  Montserrat Miñarro,et al.  The use of the SeDeM Diagram expert system to determine the suitability of diluents-disintegrants for direct compression and their use in formulation of ODT. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[127]  S. Saha,et al.  Multifunctional coprocessed excipients for improved tabletting performance , 2009 .

[128]  Jheng-Hua Lin,et al.  Characteristics of taro (Colocasia esculenta) starches planted in different seasons and their relations to the molecular structure of starch. , 2008, Journal of agricultural and food chemistry.

[129]  L. Augsburger,et al.  The Influence of Granulation on Super Disintegrant Performance , 2006, Pharmaceutical development and technology.

[130]  L. Augsburger,et al.  The influence of swelling capacity of superdisintegrants in different pH media on the dissolution of hydrochlorothiazide from directly compressed tablets , 2005, AAPS PharmSciTech.

[131]  P. Piccerelle,et al.  Determination of the in vitro disintegration profile of rapidly disintegrating tablets and correlation with oral disintegration. , 2005, International journal of pharmaceutics.

[132]  S. El-arini,et al.  Evaluation of Disintegration Testing of Different Fast Dissolving Tablets Using the Texture Analyzer , 2002, Pharmaceutical development and technology.

[133]  J. Fix,et al.  In Vitro Determination of Disintegration Time of Quick-Dissolve Tablets Using a New Method , 2000, Pharmaceutical development and technology.

[134]  P. Colombo,et al.  Tablet water uptake and disintegration force measurements , 1989 .

[135]  T Nagai,et al.  Disintegration of the aspirin tablets containing potato starch and microcrystalline cellulose in various concentrations. , 1969, Chemical & pharmaceutical bulletin.

[136]  Mao Yuhua,et al.  KONJAC GLUCOMANNAN AND ITS MODIFICATIONS AS TABLET DISINTEGRANTS , 2017 .

[137]  Xiaorong He,et al.  A Practical Framework Toward Prediction of Breaking Force and Disintegration of Tablet Formulations Using Machine Learning Tools. , 2017, Journal of pharmaceutical sciences.

[138]  O. Odeku,et al.  Evaluation of the disintegrant properties of native and modified forms of fonio and sweet potato starches , 2016 .

[139]  F. Ye,et al.  UV Imaging for In Vitro Dissolution and Release Studies: Intial Experiences , 2014 .

[140]  Jens Frahm,et al.  Tablet disintegration studied by high-resolution real-time magnetic resonance imaging. , 2014, Journal of pharmaceutical sciences.

[141]  Hans Leuenberger,et al.  3-D cellular automata in computer-aided design of pharmaceutical formulations: mathematical concept and F-CAD software , 2013 .

[142]  Yang Xiu-mei,et al.  The determination of micromeritics parameters of dispersible tablet's common excipients and the effects of SiO_2 on TCM dispersible tablet's disintegrating properties , 2013 .

[143]  Yang Ming Research on micro-silica gel used for powder modification of Angelicae Dahuricae Radix extract and its mechanism of promoting disintegration of Yuanhu Zhitong Dispersible Tablets , 2012 .

[144]  G. Alderborn,et al.  Bonding Surface area and Bonding Mechanism-Two Important Factors fir the Understanding of Powder Comparability , 1993 .

[145]  Christopher T. Rhodes,et al.  Evaluations of the Mechanism of Disintegrant Action , 1982 .