Influence of inactive electrode components on degradation phenomena in nano-Si electrodes for Li-ion batteries

Abstract The electrode morphology and electrochemistry of silicon nanocomposite electrodes containing either carboxymethyl cellulose (CMC-Na) or poly(acrylic acid) (PAA) binders are examined in context of their working surface area. Using porous carbon (Ketjenblack) additives, coatings with poor adhesion properties and deep cracks were obtained. The morphology is also reflected in the electrochemical behavior under capacity-limited conditions. Mapping the differential capacity versus potential over all cycles yields detailed insights into the degradation processes and shows the onset of cell failure with the emergence of lithium-rich silicon alloys at low potentials, well before capacity fading is observed. Fading occurs faster with electrodes containing PAA binder. The surface area of the electrode components is a major cause of increased irreversible reaction and capacity fade. Synchrotron-based X-ray photoelectron spectroscopy on aged, uncycled electrodes revealed accelerated conversion of the native SiO x -layer to detrimental SiO x F y in presence of Ketjenblack. In contrast, a conventional carbon black better preserved the SiO x -layer. This effect is attributed to preferred adsorption of binder on high surface area electrode components and highlights the role of binders as ‘artificial SEI-layers’. This work demonstrates that optimization of nanocomposites requires careful balancing of the surface areas and amounts of all the electrode components applied.

[1]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[2]  K. Edström,et al.  Influence of the cathode porosity on the discharge performance of the lithiumoxygen battery , 2011 .

[3]  Young-Min Choi,et al.  Effect of poly(acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries , 2006 .

[4]  Xiqian Yu,et al.  Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction , 2012 .

[5]  J. Janek,et al.  Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders. , 2013, ACS applied materials & interfaces.

[6]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[7]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[8]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[9]  J. Tarascon,et al.  In Situ Observation and Long-Term Reactivity of Si/C/CMC Composites Electrodes for Li-Ion Batteries , 2011 .

[10]  M. Winter,et al.  Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate , 2013 .

[11]  M. Braga,et al.  Li–Si phase diagram: Enthalpy of mixing, thermodynamic stability, and coherent assessment , 2014 .

[12]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[13]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[14]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[15]  M. Cerbelaud,et al.  Manufacturing of industry-relevant silicon negative composite electrodes for lithium ion-cells , 2014 .

[16]  Michael F Toney,et al.  In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. , 2012, ACS nano.

[17]  K. Edström,et al.  Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study. , 2013, Journal of the American Chemical Society.

[18]  P. Novák,et al.  Graphites for lithium-ion cells : The correlation of the first-cycle charge loss with the Brunauer-Emmett-Teller surface area , 1998 .

[19]  Payam Kaghazchi,et al.  On the origin of anisotropic lithiation of silicon , 2015 .

[20]  K. Edström,et al.  Porosity Blocking in Highly Porous Carbon Black by PVdF Binder and Its Implications for the Li–S System , 2014 .

[21]  L. Ernst,et al.  Hydrolysis in the system LiPF6—propylene carbonate—dimethyl carbonate—H2O , 2005 .

[22]  D. Guyomard,et al.  Silicon Composite Electrode with High Capacity and Long Cycle Life , 2009 .

[23]  K. Edström,et al.  Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries : A Photoelectron Spectroscopy Study , 2013 .

[24]  E. Peled,et al.  Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium–ion cells for EV applications , 2009 .

[25]  M. Morcrette,et al.  Partially Oxidized Silicon Particles for Stable Aqueous Slurries and Practical Large-Scale Making of Si-Based Electrodes , 2015 .

[26]  P. Moreau,et al.  Critical Role of Silicon Nanoparticles Surface on Lithium Cell Electrochemical Performance Analyzed by FTIR, Raman, EELS, XPS, NMR, and BDS Spectroscopies , 2014 .

[27]  P. Moreau,et al.  The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries , 2011 .

[28]  Xiangyun Song,et al.  Cooperation between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode , 2012 .

[29]  P. Novák,et al.  Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries , 2006 .

[30]  Jing-ying Xie,et al.  Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries , 2007 .

[31]  B. Lestriez,et al.  Analogy between electrochemical behaviour of thick silicon granular electrodes for lithium batteries and fine soils micromechanics , 2014 .

[32]  S. Komaba,et al.  Functional interface of polymer modified graphite anode , 2009 .

[33]  J. Tarascon,et al.  Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon–Carbon Composites , 2007 .

[34]  Kristina Edström,et al.  A stable graphite negative electrode for the lithium-sulfur battery. , 2015, Chemical communications.

[35]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[36]  H. Oji,et al.  Graphite‐Silicon‐Polyacrylate Negative Electrodes in Ionic Liquid Electrolyte for Safer Rechargeable Li‐Ion Batteries , 2011 .

[37]  D. Guyomard,et al.  Critical roles of binders and formulation at multiscales of silicon-based composite electrodes , 2015 .

[38]  D. Brandell,et al.  Functional binders as graphite exfoliation suppressants in aggressive electrolytes for lithium-ion batteries , 2015 .

[39]  Jaephil Cho,et al.  A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. , 2012, Angewandte Chemie.

[40]  S. Komaba,et al.  Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media , 2010 .

[41]  Fredrik Lindgren,et al.  Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive , 2015 .

[42]  D. Guyomard,et al.  A film maturation process for improving the cycle life of Si-based anodes for Li-ion batteries , 2015 .

[43]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[44]  D. Briggs,et al.  High resolution XPS of organic polymers , 1992 .

[45]  Dominique Guyomard,et al.  On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries , 2007 .

[46]  N. Dudney,et al.  Electrochemically-driven solid-state amorphization in lithium–metal anodes , 2003 .

[47]  H. Groult,et al.  Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries , 2009 .

[48]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[49]  Andreas Richter,et al.  Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work at transition point , 1999 .

[50]  S. Komaba,et al.  Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries , 2012 .

[51]  F. Tubert,et al.  High-temperature degradation of polyacrylic acid in aqueous solution , 1996 .

[52]  J. Janek,et al.  Fair performance comparison of different carbon blacks in lithium–sulfur batteries with practical mass loadings – Simple design competes with complex cathode architecture , 2015 .

[53]  J. Tarascon,et al.  Si Electrodes for Li-Ion batteries- A new way to look at an old problem , 2008 .

[54]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[55]  Fredrik J. Lindgren,et al.  A hard X-ray photoelectron spectroscopy study on the solid electrolyte interphase of a lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide based electrolyte for Si-electrodes , 2016 .

[56]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[57]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[58]  Kristina Edström,et al.  Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy , 2013 .

[59]  H. Zhong,et al.  Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries , 2014 .

[60]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[61]  R. Kostecki,et al.  HF Formation in LiPF6-Based Organic Carbonate Electrolytes , 2013 .

[62]  K. Edström,et al.  Visualising the problems with balancing lithium-sulfur batteries by "mapping" internal resistance. , 2015, Chemical communications.