Mechanisms of face perception.

Faces are among the most informative stimuli we ever perceive: Even a split-second glimpse of a person's face tells us his identity, sex, mood, age, race, and direction of attention. The specialness of face processing is acknowledged in the artificial vision community, where contests for face-recognition algorithms abound. Neurological evidence strongly implicates a dedicated machinery for face processing in the human brain to explain the double dissociability of face- and object-recognition deficits. Furthermore, recent evidence shows that macaques too have specialized neural machinery for processing faces. Here we propose a unifying hypothesis, deduced from computational, neurological, fMRI, and single-unit experiments: that what makes face processing special is that it is gated by an obligatory detection process. We clarify this idea in concrete algorithmic terms and show how it can explain a variety of phenomena associated with face processing.

[1]  C. M. Mooney Age in the development of closure ability in children. , 1957, Canadian journal of psychology.

[2]  J. Konorski Integrative activity of the brain : an interdisciplinary approach , 1967 .

[3]  D. B. Bender,et al.  Visual Receptive Fields of Neurons in Inferotemporal Cortex of the Monkey , 1969, Science.

[4]  Richard Hunter Integrative activity of the brain. An interdisciplinary approach , 1969 .

[5]  R. Yin Looking at Upside-down Faces , 1969 .

[6]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[7]  P. Thompson,et al.  Margaret Thatcher: A New Illusion , 1980, Perception.

[8]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[9]  A. J. Mistlin,et al.  Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. , 1984, Human neurobiology.

[10]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  E. Rolls,et al.  Neurons in the amygdala of the monkey with responses selective for faces , 1985, Behavioural Brain Research.

[12]  A. J. Mistlin,et al.  Visual cells in the temporal cortex sensitive to face view and gaze direction , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  A. Young,et al.  Understanding face recognition. , 1986, British journal of psychology.

[14]  S. Carey,et al.  Why faces are and are not special: an effect of expertise. , 1986, Journal of experimental psychology. General.

[15]  H. Barlow Why have multiple cortical areas? , 1986, Vision Research.

[16]  G. Rhodes,et al.  Identification and ratings of caricatures: Implications for mental representations of faces , 1987, Cognitive Psychology.

[17]  A. Young,et al.  Configurational Information in Face Perception , 1987, Perception.

[18]  D I Perrett,et al.  Frameworks of analysis for the neural representation of animate objects and actions. , 1989, The Journal of experimental biology.

[19]  C. McManus,et al.  Sensitivity to the Displacement of Facial Features in Negative and Inverted Images , 1990, Perception.

[20]  G. Rhodes,et al.  Distinctiveness and Expertise Effects with Homogeneous Stimuli: Towards a Model of Configural Coding , 1990, Perception.

[21]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[22]  Leslie G. Ungerleider,et al.  Dissociation of object and spatial visual processing pathways in human extrastriate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[24]  Mark H. Johnson,et al.  Newborns' preferential tracking of face-like stimuli and its subsequent decline , 1991, Cognition.

[25]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[26]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[27]  D. Perrett,et al.  Time course of neural responses discriminating different views of the face and head. , 1992, Journal of neurophysiology.

[28]  M. Tovée,et al.  Information encoding and the responses of single neurons in the primate temporal visual cortex. , 1993, Journal of neurophysiology.

[29]  Paul W. B. Atkins,et al.  Models of reading aloud: Dual-route and parallel-distributed-processing approaches. , 1993 .

[30]  Alice J. O'Toole,et al.  Low-dimensional representation of faces in higher dimensions of the face space , 1993 .

[31]  M. Farah,et al.  Parts and Wholes in Face Recognition , 1993, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[32]  M. Argyle,et al.  Gaze and Mutual Gaze , 1994, British Journal of Psychiatry.

[33]  M. Tovée,et al.  Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. , 1994, Journal of neurophysiology.

[34]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[35]  M. Farah,et al.  The inverted face inversion effect in prosopagnosia: Evidence for mandatory, face-specific perceptual mechanisms , 1995, Vision Research.

[36]  Keiji Tanaka,et al.  Optical Imaging of Functional Organization in the Monkey Inferotemporal Cortex , 1996, Science.

[37]  T. Poggio,et al.  I think I know that face... , 1996, Nature.

[38]  George Wolberg,et al.  Recent advances in image morphing , 1996, Proceedings of CG International '96.

[39]  T. Allison,et al.  Differential Sensitivity of Human Visual Cortex to Faces, Letterstrings, and Textures: A Functional Magnetic Resonance Imaging Study , 1996, The Journal of Neuroscience.

[40]  G. Winocur,et al.  What Is Special about Face Recognition? Nineteen Experiments on a Person with Visual Object Agnosia and Dyslexia but Normal Face Recognition , 1997, Journal of Cognitive Neuroscience.

[41]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[42]  P. Goldman-Rakic,et al.  Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. , 1997, Journal of neurophysiology.

[43]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[44]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[45]  George Wolberg,et al.  Image morphing: a survey , 1998, The Visual Computer.

[46]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[47]  M. Farah,et al.  What is "special" about face perception? , 1998, Psychological review.

[48]  C Umiltà,et al.  Preferential orienting to faces in newborns: a temporal-nasal asymmetry. , 1998, Journal of experimental psychology. Human perception and performance.

[49]  P. Cavanagh,et al.  A shape-contrast effect for briefly presented stimuli. , 1998, Journal of experimental psychology. Human perception and performance.

[50]  K. Nakayama,et al.  The effect of face inversion on the human fusiform face area , 1998, Cognition.

[51]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[52]  W. Keller,et al.  Last but Not Least Regulated Poly(A) Tail Formation , 1999, Cell.

[53]  P S Goldman-Rakic,et al.  Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. , 1999, Cerebral cortex.

[54]  Otto H. MacLin,et al.  Figural aftereffects in the perception of faces , 1999, Psychonomic bulletin & review.

[55]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[56]  I. Fujita,et al.  Neuronal mechanisms of selectivity for object features revealed by blocking inhibition in inferotemporal cortex , 2000, Nature Neuroscience.

[57]  K. Nakayama,et al.  RESPONSE PROPERTIES OF THE HUMAN FUSIFORM FACE AREA , 2000, Cognitive neuropsychology.

[58]  G. Rhodes,et al.  Caricature Effects, Distinctiveness, and Identification: Testing the Face-Space Framework , 2000, Psychological science.

[59]  Alex Pentland,et al.  Bayesian face recognition , 2000, Pattern Recognit..

[60]  P Sinha,et al.  Last but Not Least , 2000, Perception.

[61]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[62]  M. Tarr,et al.  FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise , 2000, Nature Neuroscience.

[63]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[64]  A. Young,et al.  A principal component analysis of facial expressions , 2001, Vision Research.

[65]  C. Connor,et al.  Shape representation in area V4: position-specific tuning for boundary conformation. , 2001, Journal of neurophysiology.

[66]  A. O'Toole,et al.  Prototype-referenced shape encoding revealed by high-level aftereffects , 2001, Nature Neuroscience.

[67]  Talma Hendler,et al.  Vase or face? A neural correlate of shape-selective grouping processes in the human brain , 2001, NeuroImage.

[68]  H. Tamura,et al.  Visual response properties of cells in the ventral and dorsal parts of the macaque inferotemporal cortex. , 2001, Cerebral cortex.

[69]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[70]  Talma Hendler,et al.  Vase or face? A neural correlate of shape-selective grouping processes in the human brain , 2001, NeuroImage.

[71]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[72]  Pawan Sinha,et al.  Recognizing complex patterns , 2002, Nature Neuroscience.

[73]  N. Kanwisher,et al.  How Distributed Is Visual Category Information in Human Occipito-Temporal Cortex? An fMRI Study , 2002, Neuron.

[74]  Pawan Sinha,et al.  Qualitative Representations for Recognition , 2002, Biologically Motivated Computer Vision.

[75]  Timothy J. Andrews,et al.  Activity in the Fusiform Gyrus Predicts Conscious Perception of Rubin's Vase–Face Illusion , 2002, NeuroImage.

[76]  N. Kanwisher,et al.  Stages of processing in face perception: an MEG study , 2002, Nature Neuroscience.

[77]  M. Tarr,et al.  Unraveling mechanisms for expert object recognition: bridging brain activity and behavior. , 2002, Journal of experimental psychology. Human perception and performance.

[78]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[79]  M. Behrmann,et al.  Impact of learning on representation of parts and wholes in monkey inferotemporal cortex , 2002, Nature Neuroscience.

[80]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[81]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[82]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[83]  Tony Jebara,et al.  Images as bags of pixels , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[84]  N. Kanwisher,et al.  The fusiform face area subserves face perception, not generic within-category identification , 2004, Nature Neuroscience.

[85]  Andreas Kleinschmidt,et al.  Scale invariant adaptation in fusiform face-responsive regions , 2004, NeuroImage.

[86]  Hisao Nishijo,et al.  Neuronal correlates of face identification in the monkey anterior temporal cortical areas. , 2004, Journal of neurophysiology.

[87]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[88]  D. Perrett,et al.  Rapid serial visual presentation for the determination of neural selectivity in area STSa. , 2004, Progress in brain research.

[89]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[90]  Charles E Connor,et al.  Underlying principles of visual shape selectivity in posterior inferotemporal cortex , 2004, Nature Neuroscience.

[91]  Stanislas Dehaene,et al.  Specialization within the ventral stream: the case for the visual word form area , 2004, NeuroImage.

[92]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[93]  M. Harries,et al.  Viewer-centred and object-centred coding of heads in the macaque temporal cortex , 2004, Experimental Brain Research.

[94]  Timothy J. Andrews,et al.  Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe , 2004, NeuroImage.

[95]  E. Rolls,et al.  Size and contrast have only small effects on the responses to faces of neurons in the cortex of the superior temporal sulcus of the monkey , 2004, Experimental Brain Research.

[96]  G. Rhodes,et al.  Orientation-Contingent Face Aftereffects and Implications for Face-Coding Mechanisms , 2004, Current Biology.

[97]  A. Treves,et al.  Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain , 2005, Nature Neuroscience.

[98]  C. Gross,et al.  Representations of faces and body parts in macaque temporal cortex: a functional MRI study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[99]  A. Young,et al.  Understanding the recognition of facial identity and facial expression , 2005, Nature Reviews Neuroscience.

[100]  Hisao Nishijo,et al.  Differential characteristics of face neuron responses within the anterior superior temporal sulcus of macaques. , 2005, Journal of neurophysiology.

[101]  Stuart Anstis,et al.  Holistic Word Processing , 2005 .

[102]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[103]  I. Biederman,et al.  Representation of regular and irregular shapes in macaque inferotemporal cortex. , 2005, Cerebral cortex.

[104]  Witold Pedrycz,et al.  Face recognition: A study in information fusion using fuzzy integral , 2005, Pattern Recognit. Lett..

[105]  Gilles Pourtois,et al.  View-independent coding of face identity in frontal and temporal cortices is modulated by familiarity: an event-related fMRI study , 2005, NeuroImage.

[106]  I. Biederman,et al.  Tuning for shape dimensions in macaque inferior temporal cortex , 2005, The European journal of neuroscience.

[107]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[108]  I. Biederman,et al.  What makes faces special? , 2006, Vision Research.

[109]  G. Rhodes,et al.  Adaptive norm-based coding of facial identity , 2006, Vision Research.

[110]  R. Kiani,et al.  Microstimulation of inferotemporal cortex influences face categorization , 2006, Nature.

[111]  M. Giese,et al.  Norm-based face encoding by single neurons in the monkey inferotemporal cortex , 2006, Nature.

[112]  Linda Jeffery,et al.  View-specific coding of face shape. , 2010, Psychological science.

[113]  Pawan Sinha,et al.  Face Recognition by Humans: Nineteen Results All Computer Vision Researchers Should Know About , 2006, Proceedings of the IEEE.

[114]  G. Rhodes,et al.  View-Specific Coding of Face Shape , 2006 .

[115]  S. Ullman Object recognition and segmentation by a fragment-based hierarchy , 2007, Trends in Cognitive Sciences.

[116]  P. Cavanagh,et al.  Retinotopy of the face aftereffect , 2008, Vision Research.

[117]  R. Wurtz,et al.  Brain circuits for the internal monitoring of movements. , 2008, Annual review of neuroscience.

[118]  Steven W. Flavell,et al.  Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. , 2008, Annual review of neuroscience.