A time to search: finding the meaning of variable activation energy.

This review deals with the phenomenon of variable activation energy frequently observed when studying the kinetics in the liquid or solid phase. This phenomenon commonly manifests itself through nonlinear Arrhenius plots or dependencies of the activation energy on conversion computed by isoconversional methods. Variable activation energy signifies a multi-step process and has a meaning of a collective parameter linked to the activation energies of individual steps. It is demonstrated that by using appropriate models of the processes, the link can be established in algebraic form. This allows one to analyze experimentally observed dependencies of the activation energy in a quantitative fashion and, as a result, to obtain activation energies of individual steps, to evaluate and predict other important parameters of the process, and generally to gain deeper kinetic and mechanistic insights. This review provides multiple examples of such analysis as applied to the processes of crosslinking polymerization, crystallization and melting of polymers, gelation, and solid-solid morphological and glass transitions. The use of appropriate computational techniques is discussed as well.

[1]  J. A. Huidobro,et al.  Reducing the effects of noise in the calculation of activation energy by the Friedman method , 2016 .

[2]  M. Vafayan,et al.  The influence of CO2 fixation reaction and nanoclay addition on the curing kinetic parameters of a bifunctioal epoxy resin , 2015 .

[3]  S. Biswas,et al.  Correlation between nucleation, phase transition and dynamic melt-crystallization kinetics in PAni/PVDF blends , 2015 .

[4]  J. Valverde On the negative activation energy for limestone calcination at high temperatures nearby equilibrium , 2015 .

[5]  S. D. Vos,et al.  Isothermal crystallization and structural characterization of poly(ethylene-2,5-furanoate) , 2015 .

[6]  K. Boering,et al.  Strong Negative Temperature Dependence of the Simplest Criegee Intermediate CH2OO Reaction with Water Dimer. , 2015, Journal of Physical Chemistry Letters.

[7]  Sergey Vyazovkin,et al.  Nanoconfined Solid–Solid Transitions: Attempt To Separate the Size and Surface Effects , 2015 .

[8]  Peter Simon,et al.  An incremental isoconversional method for kinetic analysis based on the orthogonal distance regression , 2015, J. Comput. Chem..

[9]  Ed de Jong,et al.  Non-isothermal Crystallization Kinetics of Biobased Poly(ethylene 2,5-furandicarboxylate) Synthesized via the Direct Esterification Process , 2014 .

[10]  S. Vyazovkin,et al.  Coil-to-Globule Transition of Poly(N-isopropylacrylamide) in Aqueous Solution: Kinetics in Bulk and Nanopores , 2014 .

[11]  Jacques Persello,et al.  Melt and glass crystallization of PDMS and PDMS silica nanocomposites. , 2014, Physical chemistry chemical physics : PCCP.

[12]  Sergey Vyazovkin,et al.  Polymer Melting Kinetics Appears to be Driven by Heterogeneous Nucleation , 2014 .

[13]  Sergey Vyazovkin,et al.  High Temperature Solid–Solid Transition in Ammonium Chloride Confined to Nanopores , 2013 .

[14]  M. Ghoreishy,et al.  Advanced integral isoconversional analysis for evaluating and predicting the kinetic parameters of the curing reaction of epoxy prepreg , 2013 .

[15]  Evgeny Zhuravlev,et al.  Nonisothermal crystallization of polytetrafluoroethylene in a wide range of cooling rates. , 2013, The journal of physical chemistry. B.

[16]  N. Guigo,et al.  Atypical gelation in gelatin solutions probed by ultra-fast calorimetry , 2012 .

[17]  R. Alizadeh,et al.  Isothermal curing behavior and thermo-physical properties of epoxy-based thermoset nanocomposites reinforced with Fe2O3 nanoparticles , 2012 .

[18]  Takashi Sasaki Melting of poly(ε-caprolactone) studied by step-heating calorimetry , 2012, Journal of Thermal Analysis and Calorimetry.

[19]  P. Budrugeac,et al.  An iterative model-free method to determine the activation energy of heterogeneous processes under arbitrary temperature programs , 2011 .

[20]  Qi Wang,et al.  Concept of variable activation energy and its validity in nonisothermal kinetics. , 2011, The journal of physical chemistry. A.

[21]  Naian Liu,et al.  New incremental isoconversional method for kinetic analysis of solid thermal decomposition , 2011 .

[22]  F. Ravari,et al.  Curing behavior and structure of a novel nanocomposite from glycerol diglycidyl ether and 3,3-dimethylglutaric anhydride , 2011 .

[23]  P. Budrugeac,et al.  An iterative model-free method to determine the activation energy of non-isothermal heterogeneous processes , 2010 .

[24]  Alice Mija,et al.  Hybrid nanocomposites: advanced nonlinear method for calculating key kinetic parameters of complex cure kinetics. , 2010, The journal of physical chemistry. B.

[25]  G. Papageorgiou,et al.  Estimation of thermal transitions in poly(ethylene naphthalate): Experiments and modeling using isoconversional methods , 2010 .

[26]  Siyu Chen,et al.  A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree , 2009, J. Comput. Chem..

[27]  Jia Huang,et al.  Dispersion, crystallization kinetics, and parameters of Hoffman–Lauritzen theory of polypropylene and nanoscale calcium carbonate composite , 2009 .

[28]  Sergey Vyazovkin,et al.  Concentration Effect on Temperature Dependence of Gelation Rate in Aqueous Solutions of Methylcellulose , 2009 .

[29]  A. Ortega,et al.  A simple and precise linear integral method for isoconversional data , 2008 .

[30]  Ian W. M. Smith The temperature-dependence of elementary reaction rates: beyond Arrhenius. , 2008, Chemical Society reviews.

[31]  J. Puiggalí,et al.  Nonisothermal crystallization studies on poly(4‐hydroxybutyric acid‐alt‐glycolic acid) , 2008 .

[32]  Jia Huang,et al.  Morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate)/poly(ethylene-co-methacrylic acid) blends , 2007 .

[33]  H. L. Friedman,et al.  Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic , 2007 .

[34]  Wei Zheng,et al.  Isoconversion analysis of the glass transition , 2007 .

[35]  Ammar Khawam,et al.  Solid-state kinetic models: basics and mathematical fundamentals. , 2006, The journal of physical chemistry. B.

[36]  N. Sbirrazzuoli,et al.  Variation in Activation Energy of the Glass Transition for Polymers of Different Dynamic Fragility , 2006 .

[37]  Sergey Vyazovkin,et al.  Isoconversional Analysis of Combined Melt and Glass Crystallization Data , 2006 .

[38]  G. Papageorgiou,et al.  Evaluation of the Isoconversional Approach to Estimating the Hoffman‐Lauritzen Parameters from the Overall Rates of Non‐Isothermal Crystallization of Polymers , 2005 .

[39]  Chen Donghua,et al.  An integral method to determine variation in activation energy with extent of conversion , 2005 .

[40]  N. Sbirrazzuoli,et al.  Isoconversional Approach to Evaluating the Hoffman–Lauritzen Parameters (U* and Kg) from the Overall Rates of Nonisothermal Crystallization , 2004 .

[41]  P. Simon,et al.  IISCONVERSIONAL METHODS fundamentals, meaning and application , 2004 .

[42]  Marco J. Starink,et al.  The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods , 2003 .

[43]  Paul S. Thomas,et al.  AN INCREMENTAL INTEGRAL ISOCONVERSIONAL METHOD Determination of activation parameters , 2003 .

[44]  A. Galwey What is meant by the term ‘variable activation energy’ when applied in the kinetic analyses of solid state decompositions (crystolysis reactions)? , 2003 .

[45]  S. Vyazovkin Is the Kissinger Equation Applicable to the Processes that Occur on Cooling , 2002 .

[46]  Koji Yamada,et al.  Superheating of the melting kinetics in polymer crystals: a possible nucleation mechanism , 2002 .

[47]  Sergey Vyazovkin,et al.  Modification of the integral isoconversional method to account for variation in the activation energy , 2001, J. Comput. Chem..

[48]  Sergey Vyazovkin,et al.  Kinetic concepts of thermally stimulated reactions in solids: A view from a historical perspective , 2000 .

[49]  S. Vyazovkin On the phenomenon of variable activation energy for condensed phase reactions , 2000 .

[50]  Crisan Popescu,et al.  Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions A variant on the Ozawa-Flynn-Wall method , 1996 .

[51]  Sergey Vyazovkin,et al.  Mechanism and Kinetics of Epoxy-Amine Cure Studied by Differential Scanning Calorimetry , 1996 .

[52]  K. Miura A New and Simple Method to Estimate f(E) and k0(E) in the Distributed Activation Energy Model from Three Sets of Experimental Data , 1995 .

[53]  Y. Furukawa,et al.  Cationic Self‐Diffusion in the Highest‐Temperature Solid Phases of Ammonium Chloride and Bromide Studied by 1H NMR , 1992 .

[54]  J. Guenet Thermoreversible gelation of polymers and biopolymers , 1992 .

[55]  C. Angell Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit , 1988 .

[56]  Anthony R. West,et al.  Solid State Chemistry and its Applications , 1984 .

[57]  A. Malkin,et al.  Non‐isothermal phenomena in polymer engineering and science: A review. Part II: Non‐isothermal phenomena in polymer deformation , 1979 .

[58]  Musa R. Kamal,et al.  Thermoset characterization for moldability analysis , 1974 .

[59]  J. R. Hulett Deviations from the Arrhenius equation , 1964 .

[60]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[61]  R. Landel,et al.  The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids , 1955 .

[62]  David Turnbull,et al.  Rate of Nucleation in Condensed Systems , 1949 .

[63]  E. Rabinowitch,et al.  Collision, co-ordination, diffusion and reaction velocity in condensed systems , 1937 .