A complete gap-free diploid genome in Saccharum complex and the genomic footprints of evolution in the highly polyploid Saccharum genus

[1]  Xingtan Zhang,et al.  A draft chromosome-scale genome assembly of a commercial sugarcane , 2022, Scientific Reports.

[2]  G. Wang,et al.  Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum , 2022, Nature Genetics.

[3]  Jiming Jiang,et al.  Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in the Saccharum complex. , 2021, The New phytologist.

[4]  Hector F. Espitia-Navarro,et al.  Unraveling the Genome of a High Yielding Colombian Sugarcane Hybrid , 2021, Frontiers in Plant Science.

[5]  Shan Lu,et al.  Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution. , 2021, Molecular plant.

[6]  R. Wing,et al.  Two Gap-free Reference Genomes and a Global View of the Centromere Architecture in Rice. , 2021, Molecular plant.

[7]  K. Ye,et al.  High-quality Arabidopsis thaliana Genome Assembly with Nanopore and HiFi Long Reads , 2021, bioRxiv.

[8]  M. Schatz,et al.  The genetic and epigenetic landscape of the Arabidopsis centromeres , 2021, bioRxiv.

[9]  Aaron M. Streets,et al.  The complete sequence of a human genome , 2021, bioRxiv.

[10]  R. Ming,et al.  The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae , 2021, Nature Plants.

[11]  P. Wincker,et al.  Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing , 2021, Communications Biology.

[12]  Muqing Zhang,et al.  The formation and evolution of centromeric satellite repeats in Saccharum species. , 2021, The Plant journal : for cell and molecular biology.

[13]  Heng Li,et al.  Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm , 2021, Nature Methods.

[14]  Carson M. Andorf,et al.  De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes , 2021, Science.

[15]  E. Kellogg,et al.  A new combination in the genus Tripidium (Poaceae: Andropogoneae) , 2020 .

[16]  Silvio C. E. Tosatto,et al.  The InterPro protein families and domains database: 20 years on , 2020, Nucleic Acids Res..

[17]  Jessica R. Holmes,et al.  Genome biology of the paleotetraploid perennial biomass crop Miscanthus , 2020, Nature Communications.

[18]  R. Erdmann,et al.  RNA-directed DNA Methylation , 2020, PLoS genetics.

[19]  A. D'Hont,et al.  Sugarcane genome architecture decrypted with chromosome specific oligo probes. , 2020, The Plant journal : for cell and molecular biology.

[20]  Sergey Koren,et al.  HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads , 2020, bioRxiv.

[21]  T. Michael,et al.  Building near-complete plant genomes. , 2020, Current opinion in plant biology.

[22]  J. Heitman,et al.  Loss of centromere function drives karyotype evolution in closely related Malassezia species , 2020, eLife.

[23]  D. Heckerman,et al.  Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world's leading biomass crop , 2019, GigaScience.

[24]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[25]  C. dePamphilis,et al.  GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes , 2019, bioRxiv.

[26]  A. Scelfo,et al.  Keeping the Centromere under Control: A Promising Role for DNA Methylation , 2019, Cells.

[27]  E. Kellogg,et al.  Plastome phylogenomics of sugarcane and relatives confirms the segregation of the genus Tripidium (Poaceae: Andropogoneae) , 2019, TAXON.

[28]  Jianping Wang,et al.  Whole chloroplast genome and gene locus phylogenies reveal the taxonomic placement and relationship of Tripidium (Panicoideae: Andropogoneae) to sugarcane , 2019, BMC Evolutionary Biology.

[29]  David Sankoff,et al.  Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. , 2018, Nature Genetics.

[30]  Shujun Ou,et al.  Assessing genome assembly quality using the LTR Assembly Index (LAI) , 2018, Nucleic acids research.

[31]  B. Simmons,et al.  A mosaic monoploid reference sequence for the highly complex genome of sugarcane , 2018, Nature Communications.

[32]  D. Spooner,et al.  Genome diversity of the potato , 2018, Proceedings of the National Academy of Sciences.

[33]  Nam V. Hoang,et al.  The Challenge of Analyzing the Sugarcane Genome , 2018, Front. Plant Sci..

[34]  S. Kelly,et al.  STAG: Species Tree Inference from All Genes , 2018, bioRxiv.

[35]  Shujun Ou,et al.  LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons1[OPEN] , 2017, Plant Physiology.

[36]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[37]  Luis Pedro Coelho,et al.  Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper , 2016, bioRxiv.

[38]  J. Grimwood,et al.  Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity , 2016, Nature Biotechnology.

[39]  R. Ming,et al.  Structure, phylogeny, allelic haplotypes and expression of sucrose transporter gene families in Saccharum , 2016, BMC Genomics.

[40]  P. Ng,et al.  SIFT missense predictions for genomes , 2015, Nature Protocols.

[41]  D. Soltis,et al.  Polyploidy and genome evolution in plants. , 2015, Current opinion in genetics & development.

[42]  Jean-Philippe Vert,et al.  HiC-Pro: an optimized and flexible pipeline for Hi-C data processing , 2015, Genome Biology.

[43]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[44]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[45]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[46]  Yun-Xin Fu,et al.  Exploring Population Size Changes Using SNP Frequency Spectra , 2015, Nature Genetics.

[47]  William B. Langdon,et al.  Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks , 2015, BioData Mining.

[48]  Anders Albrechtsen,et al.  ANGSD: Analysis of Next Generation Sequencing Data , 2014, BMC Bioinformatics.

[49]  M. Lampson,et al.  Centromere Strength Provides the Cell Biological Basis for Meiotic Drive and Karyotype Evolution in Mice , 2014, Current Biology.

[50]  R. Dawe,et al.  Diversity and evolution of centromere repeats in the maize genome , 2014, bioRxiv.

[51]  M. Matzke,et al.  RNA-directed DNA methylation: an epigenetic pathway of increasing complexity , 2014, Nature Reviews Genetics.

[52]  S. Yi,et al.  DNA methylation and evolution of duplicate genes , 2014, Proceedings of the National Academy of Sciences.

[53]  M. Stephens,et al.  fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets , 2014, Genetics.

[54]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[55]  Jiming Jiang,et al.  Boom-Bust Turnovers of Megabase-Sized Centromeric DNA in Solanum Species: Rapid Evolution of DNA Sequences Associated with Centromeres[C][W] , 2014, Plant Cell.

[56]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[57]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[58]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[59]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[60]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[61]  Felix Krueger,et al.  Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications , 2011, Bioinform..

[62]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[63]  Edward S. Buckler,et al.  Genetic structure and domestication history of the grape , 2011, Proceedings of the National Academy of Sciences.

[64]  Haibao Tang,et al.  Seventy Million Years of Concerted Evolution of a Homoeologous Chromosome Pair, in Parallel, in Major Poaceae Lineages[W] , 2011, Plant Cell.

[65]  H. Lilian,et al.  Characterization of the chromosomal transmission of intergeneric hybrids of Saccharum spp. and Erianthus fulvus by genomic in situ hybridization. , 2010 .

[66]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[67]  David H. Alexander,et al.  Fast model-based estimation of ancestry in unrelated individuals. , 2009, Genome research.

[68]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[69]  György Abrusán,et al.  TEclass - a tool for automated classification of unknown eukaryotic transposable elements , 2009, Bioinform..

[70]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[71]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[72]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[73]  Jianhua Li Flora of China , 2007 .

[74]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[75]  Gene A. Brewer,et al.  Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints , 2005, Nucleic Acids Res..

[77]  Eugene W. Myers,et al.  The fragment assembly string graph , 2005, ECCB/JBI.

[78]  A. Paterson,et al.  Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[80]  A. Riggs,et al.  Epigenetic Silencing May Aid Evolution by Gene Duplication , 2003, Journal of Molecular Evolution.

[81]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[82]  S. Eddy,et al.  Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.

[83]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[84]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[85]  J. Irvine Saccharum species as horticultural classes , 1999, Theoretical and Applied Genetics.

[86]  Kazutaka Katoh,et al.  Multiple alignment of DNA sequences with MAFFT. , 2009, Methods in molecular biology.

[87]  R. Schuster Continental movements, “Wallace’s Line” and Indomalayan-Australasian dispersal of land plants: Some eclectic concepts , 2008, The Botanical Review.

[88]  Pavel A. Pevzner,et al.  De novo identification of repeat families in large genomes , 2005, ISMB.

[89]  J. Glaszmann,et al.  Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes , 2004, Euphytica.

[90]  B. Zheng,et al.  The relationship between climate change and Quaternary glacial cycles on the Qinghai–Tibetan Plateau: review and speculation , 2002 .

[91]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[92]  Claire O'Donovan,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999 , 1999, Nucleic Acids Res..

[93]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[94]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL , 1997, Nucleic Acids Res..

[95]  J. Glaszmann,et al.  Cytoplasmic diversity in sugar cane revealed by heterologous probes , 1993 .

[96]  J. Glaszmann,et al.  Variation of nuclear ribosomal DNA in sugarcane. , 1990 .

[97]  Xiang Shu,et al.  The Flora of China , 1889, Nature.

[98]  Supplemental Information 2: Kyoto Encyclopedia of genes and genomes. , 2022 .