A new source of seed pairs for Golay sequences of length 2m
暂无分享,去创建一个
[1] Matthew G. Parker,et al. A multi-dimensional approach to the construction and enumeration of Golay complementary sequences , 2008, J. Comb. Theory, Ser. A.
[2] Matthew G. Parker,et al. Golay complementary array pairs , 2007, Des. Codes Cryptogr..
[3] Wolf H. Holzmann,et al. A computer search for complex Golay sequences , 1994, Australas. J Comb..
[4] M. Golay. Static multislit spectrometry and its application to the panoramic display of infrared spectra. , 1951, Journal of the Optical Society of America.
[5] Ying Li,et al. More Golay sequences , 2005, IEEE Trans. Inf. Theory.
[6] Jonathan Jedwab,et al. How Do More Golay Sequences Arise? , 2006, IEEE Transactions on Information Theory.
[7] Michel Kervaire,et al. On Golay polynomial pairs , 1991 .
[8] J. Jedwab,et al. Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[9] Ying Li,et al. More Golay sequences , 2005 .
[10] Marcel J. E. Golay,et al. Complementary series , 1961, IRE Trans. Inf. Theory.
[11] Peter A. Lewin,et al. On the application of signal compression using Golay's codes sequences in ultrasound diagnostic , 2003 .
[12] F. Sischka,et al. Real-time long range complementary correlation optical time domain reflectometer , 1989 .
[13] Jonathan Jedwab,et al. Contemporary Mathematics What can be used instead of a Barker sequence ? , 2007 .
[14] Matthew G. Parker,et al. A Framework for the Construction ofGolay Sequences , 2008, IEEE Transactions on Information Theory.
[15] Kenneth G. Paterson,et al. Generalized Reed-Muller codes and power control in OFDM modulation , 1998, IEEE Trans. Inf. Theory.
[16] J. Jedwab,et al. A Framework for the Construction of Golay Sequences , 2008 .