THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS

We numerically study the volume density probability distribution function (n–PDF) and the column density probability distribution function (Σ–PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n ≲ 0.6 cm−3), the n–PDF is well described by a lognormal distribution for an average local Mach number ranging from ∼0.2 to ∼5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n ≳ 7.1 cm−3) goes from ∼1.1 to ∼16.9 and the shape of the high-density zone of the n–PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the Σ–PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.

[1]  E. V'azquez-Semadeni,et al.  AN EVOLUTIONARY MODEL FOR COLLAPSING MOLECULAR CLOUDS AND THEIR STAR FORMATION ACTIVITY. II. MASS DEPENDENCE OF THE STAR FORMATION RATE , 2011, 1105.4777.

[2]  Astronomy,et al.  Gravity or turbulence? II. Evolving column density PDFs in molecular clouds , 2011, 1105.5411.

[3]  T. Henning,et al.  Probing the evolution of molecular cloud structure II. From chaos to confinement , 2011, 1104.0678.

[4]  B. Elmegreen ON THE INITIAL CONDITIONS FOR STAR FORMATION AND THE INITIAL MASS FUNCTION , 2011, 1102.5232.

[5]  W. Schmidt,et al.  Forced turbulence in thermally bistable gas: a parameter study , 2010, 1009.2871.

[6]  Daniel J. Price,et al.  THE DENSITY VARIANCE–MACH NUMBER RELATION IN SUPERSONIC, ISOTHERMAL TURBULENCE , 2010, 1010.3754.

[7]  DENSITY POWER SPECTRUM IN TURBULENT THERMALLY BISTABLE FLOWS , 2010, 1009.1424.

[8]  P. Hennebelle,et al.  On the structure of the turbulent interstellar clouds . Influence of the equation of state on the dynamics of 3D compressible flows , 2009, 0911.0748.

[9]  T. Henning,et al.  Probing the evolution of molecular cloud structure: From quiescence to birth , 2009, 0911.5648.

[10]  P. Padoan,et al.  THE STAR FORMATION RATE OF SUPERSONIC MAGNETOHYDRODYNAMIC TURBULENCE , 2009, 0907.0248.

[11]  R. Klessen,et al.  Comparing the statistics of interstellar turbulence in simulations and observations - Solenoidal versus compressive turbulence forcing , 2009, 0905.1060.

[12]  L. Hartmann,et al.  Rapid Molecular Cloud and Star Formation: Mechanisms and Movies , 2008, 0808.1078.

[13]  R. Klessen,et al.  The Density Probability Distribution in Compressible Isothermal Turbulence: Solenoidal versus Compressive Forcing , 2008, 0808.0605.

[14]  A. Fletcher,et al.  Density probability distribution functions of diffuse gas in the Milky Way , 2008, 0806.4316.

[15]  James M. Stone,et al.  Density Probability Distribution Functions in Supersonic Hydrodynamic and MHD Turbulence , 2008, 0806.1525.

[16]  L. Hartmann,et al.  Fragmentation of Shocked Flows: Gravity, Turbulence, and Cooling , 2008, 0805.0801.

[17]  Gilles Chabrier,et al.  Analytical Theory for the Initial Mass Function: CO Clumps and Prestellar Cores , 2008, 0805.0691.

[18]  B. Elmegreen Variations in Stellar Clustering with Environment: Dispersed Star Formation and the Origin of Faint Fuzzies , 2007, 0710.5788.

[19]  B. Robertson,et al.  Molecular Hydrogen and Global Star Formation Relations in Galaxies , 2007, 0710.2102.

[20]  M. Norman,et al.  The Statistics of Supersonic Isothermal Turbulence , 2007, 0704.3851.

[21]  C. Norman,et al.  Density Structure of the Interstellar Medium and the Star Formation Rate in Galactic Disks , 2007, astro-ph/0701595.

[22]  G. Kowal,et al.  Density Fluctuations in MHD Turbulence: Spectra, Intermittency, and Topology , 2006, astro-ph/0608051.

[23]  M. Mac Low,et al.  Turbulent Structure of a Stratified Supernova-driven Interstellar Medium , 2005, astro-ph/0601005.

[24]  D. Ryu,et al.  Molecular Cloud Evolution. I. Molecular Cloud and Thin Cold Neutral Medium Sheet Formation , 2005, astro-ph/0509127.

[25]  Christopher F. McKee,et al.  A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.

[26]  Jongsoo Kim,et al.  The Pressure Distribution in Thermally Bistable Turbulent Flows , 2005, astro-ph/0504444.

[27]  D. Breitschwerdt,et al.  Global dynamical evolution of the ISM in star forming galaxies. I. High resolution 3D simulations: Effect of the magnetic field , 2005, astro-ph/0502327.

[28]  E. Ostriker,et al.  Thermal and Magnetorotational Instability in the Interstellar Medium: Two-dimensional Numerical Simulations , 2003, astro-ph/0310510.

[29]  E. Falgarone,et al.  Turbulence and magnetic fields in astrophysics , 2003 .

[30]  Mordecai-Mark Mac Low,et al.  The Formation of Stellar Clusters in Turbulent Molecular Clouds: Effects of the Equation of State , 2002, astro-ph/0210479.

[31]  A. Gazol,et al.  The Nonlinear Development of the Thermal Instability in the Atomic Interstellar Medium and Its Interaction with Random Fluctuations , 2002, astro-ph/0203067.

[32]  M. Norman,et al.  Thermal Instability-induced Interstellar Turbulence , 2001, astro-ph/0112437.

[33]  B. Elmegreen Star Formation from Galaxies to Globules , 2001, astro-ph/0207114.

[34]  J. Scalo,et al.  The Temperature Distribution in Turbulent Interstellar Gas , 2001, astro-ph/0105342.

[35]  E. Vázquez-Semadeni,et al.  The Probability Distribution Function of Column Density in Molecular Clouds , 2001, astro-ph/0103199.

[36]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[37]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[38]  R. Klessen One-Point Probability Distribution Functions of Supersonic Turbulent Flows in Self-gravitating Media , 2000, astro-ph/0001379.

[39]  P. Padoan,et al.  Interstellar Turbulence: The Density PDFs of Supersonic Random Flows , 1999 .

[40]  E. Ostriker,et al.  Dissipation in Compressible Magnetohydrodynamic Turbulence , 1998, astro-ph/9809357.

[41]  B. Jones,et al.  The universality of the stellar initial mass function , 1997 .

[42]  A. Tielens,et al.  The neutral atomic phases of the interstellar medium , 1995 .

[43]  E. Vázquez-Semadeni Hierarchical Structure in Nearly Pressureless Flows as a Consequence of Self-similar Statistics , 1994 .

[44]  Blair D. Savage,et al.  An IUE Survey of Interstellar H I LY alpha Absorption , 1994 .