Detectability of surface-laid landmines with a polarimetric IR sensor

Polarimetric scattering models are developed to predict the detectability of surface-laid landmines. A specular polarimetric model works well only under the condition that there is either no sunlight or the sun is not close to the specular reflection direction. Moreover, this model does not give insight why certain man-made objects like landmines give a higher polarimetric signature than natural background. By introducing a polarimetric bidirectional reflectance distribution function (BRDF) the specular model is extended. This new model gives a better prediction of the polarimetric signature and gives a close match to the measurements of landmines with different casings as well as the sand background. The model parameters indicate that the landmines have a lower surface roughness and a higher refractive index, which is the reason why these objects are detectable from the background based on their polarimetric signature.