Universal sequences for the order-automorphisms of the rationals

This is the accepted version of the following article: J. Hyde, J. Jonusas, J. D. Mitchell, and Y. Peresse, Universal sequences for the order-automorphisms of the rationals, J. London Math. Soc., first published online May 13, 2016 which has been published in final form at doi:10.1112/jlms/jdw015

[1]  A. Kechris,et al.  Turbulence, amalgamation, and generic automorphisms of homogeneous structures , 2004, math/0409567.

[2]  N. Ruškuc,et al.  The Bergman property for semigroups , 2009 .

[3]  A. M. W. Glass,et al.  Ordered Permutation Groups , 1982 .

[4]  Saharon Shelah,et al.  The Small Index Property for ω‐Stable (ω‐Categorical Structures and for the Random Graph , 1993 .

[5]  G. Higman,et al.  Embedding Theorems for Groups , 1949 .

[6]  J. K. Truss The automorphism group of the random graph: four conjugates good, three conjugates better , 2003, Discret. Math..

[7]  Distortion in transformation groups , 2005, math/0509701.

[8]  Wacław Sierpiński Sur les suites infinies de fonctions définies dans les ensembles quelconques , 1935 .

[9]  C. Holland,et al.  The lattice-ordered groups of automorphisms of an ordered set. , 1963 .

[10]  F. Galvin Generating Countable Sets of Permutations , 1995 .

[11]  Manfred Droste,et al.  Generating automorphism groups of chains , 2005 .

[12]  George M. Bergman GENERATING INFINITE SYMMETRIC GROUPS , 2006 .

[13]  Simon Thomas,et al.  The Cofinalities of the Infinite Dimensional Classical Groups , 1996 .

[14]  Anatole Khélif,et al.  A propos de la propriété de Bergman , 2006 .

[15]  Y. Péresse,et al.  Generating countable sets of surjective functions , 2011 .

[16]  Peter M. Neumann,et al.  Subgroups of Infinite Symmetric Groups , 1990 .

[17]  Manfred Droste,et al.  Uncountable Cofinalities of Permutation Groups , 2005 .

[18]  John K. Truss,et al.  Generic Automorphisms of Homogeneous Structures , 1992 .