Alignment of Lyapunov Vectors: A Quantitative Criterion to Predict Catastrophes?

We argue that the alignment of Lyapunov vectors provides a quantitative criterion to predict catastrophes, i.e. the imminence of large-amplitude events in chaotic time-series of observables generated by sets of ordinary differential equations. Explicit predictions are reported for a Rössler oscillator and for a semiconductor laser with optoelectronic feedback.

[1]  M. Yamada,et al.  Regeneration cycle and the covariant Lyapunov vectors in a minimal wall turbulence. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  F. Tito Arecchi,et al.  Chaotic spiking and incomplete homoclinic scenarios in semiconductor lasers with optoelectronic feedback , 2009 .

[3]  Yves Pomeau,et al.  Prediction of catastrophes: an experimental model. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Sandro Rambaldi,et al.  Nonlinear stability of traffic models and the use of Lyapunov vectors for estimating the traffic state. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  S. R. Lopes,et al.  Weak dissipative effects on trajectories from the edge of basins of attraction , 2016 .

[6]  Arnaud Mussot,et al.  Turbulent dynamics of an incoherently pumped passive optical fiber cavity: Quasisolitons, dispersive waves, and extreme events , 2015 .

[7]  Zi-Gang Huang,et al.  Extreme events in multilayer, interdependent complex networks and control , 2015, Scientific Reports.

[8]  Cristina Masoller,et al.  Roadmap on optical rogue waves and extreme events , 2016 .

[9]  Antonio Politi,et al.  Covariant Lyapunov vectors , 2012, 1212.3961.

[10]  R. Samelson,et al.  An efficient method for recovering Lyapunov vectors from singular vectors , 2007 .

[11]  Jason A. C. Gallas,et al.  Manifold angles, the concept of self-similarity, and angle-enhanced bifurcation diagrams , 2016, Scientific reports.

[12]  I. Sagnes,et al.  Spatiotemporal Chaos Induces Extreme Events in an Extended Microcavity Laser. , 2015, Physical review letters.

[13]  Backward and covariant Lyapunov vectors and exponents for hard-disk systems with a steady heat current. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  C. Masoller,et al.  Controlling the likelihood of rogue waves in an optically injected semiconductor laser via direct current modulation , 2014 .

[15]  E. Kalnay,et al.  Lyapunov, singular and bred vectors in a multi-scale system: an empirical exploration of vectors related to instabilities , 2013 .

[16]  S. Hannestad,et al.  Chaotic flavor evolution in an interacting neutrino gas , 2014, 1404.3833.

[17]  K. Bannister,et al.  Real-time detection of an extreme scattering event: Constraints on Galactic plasma lenses , 2016, Science.

[18]  Physical manifestation of extreme events in random lasers. , 2015, Optics letters.

[19]  Anna Trevisan,et al.  Periodic Orbits, Lyapunov Vectors, and Singular Vectors in the Lorenz System , 1998 .

[20]  Jürgen Kurths,et al.  Complex network based techniques to identify extreme events and (sudden) transitions in spatio-temporal systems. , 2015, Chaos.

[21]  H. Kantz,et al.  Extreme Events in Nature and Society , 2006 .

[22]  Holger Kantz,et al.  Data-driven prediction and prevention of extreme events in a spatially extended excitable system. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  John Argyris,et al.  An exploration of dynamical systems and chaos , 2015 .

[24]  Karl Johann Kautsky,et al.  Nature and Society , 1989 .

[25]  T. Kambe Instability and chaos , 2007 .

[26]  B Ph van Milligen,et al.  Constructing criteria to diagnose the likelihood of extreme events in the case of the electric power grid. , 2016, Chaos.

[27]  Thomas F. Krauss,et al.  Triggering extreme events at the nanoscale in photonic seas , 2015, Nature Physics.

[28]  G. P. Tsironis,et al.  Extreme events in complex linear and nonlinear photonic media , 2016 .

[29]  Jason A. C. Gallas,et al.  The Structure of Infinite Periodic and Chaotic Hub Cascades in Phase Diagrams of Simple Autonomous Flows , 2010, Int. J. Bifurc. Chaos.

[30]  P. Pelcé,et al.  Intrinsic stochasticity with many degrees of freedom , 1984 .

[31]  J. G. Freire,et al.  Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.