Literature review on the use of phase change materials in glazing and shading solutions

The large energy consumption of the building sector is mainly resourcing to active systems for cooling and heating of indoor spaces. According this, the external envelopes of offices and commercial buildings are systematically composed by large glazed areas that lead to high energy losses in the winter and large solar gains in summer.

[1]  Philip C. Eames,et al.  A review of transparent insulation systems and the evaluation of payback period for building applications , 2007 .

[2]  P. Fanger Moderate Thermal Environments Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort , 1984 .

[3]  Xin Wang,et al.  Energy-Efficient Building Envelopes with Phase-Change Materials: New Understanding and Related Research , 2014 .

[4]  P. O. Fanger,et al.  Thermal comfort: analysis and applications in environmental engineering, , 1972 .

[5]  Joseph Virgone,et al.  Energetic efficiency of room wall containing PCM wallboard: A full-scale experimental investigation , 2008 .

[6]  M. Chantant,et al.  Experimental thermal study of a solar wall of composite type , 1997 .

[7]  Parfait Tatsidjodoung,et al.  A review of potential materials for thermal energy storage in building applications , 2013 .

[8]  Victor M. Ferreira,et al.  Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: A passive construction solution , 2012 .

[9]  Frédéric Kuznik,et al.  A review on phase change materials integrated in building walls , 2011 .

[10]  Luisa F. Cabeza,et al.  Improvement of a thermal energy storage using plates with paraffin–graphite composite , 2005 .

[11]  Na Zhu,et al.  Dynamic characteristics and energy performance of buildings using phase change materials: A review , 2009 .

[12]  Yvan Dutil,et al.  A review on phase-change materials: Mathematical modeling and simulations , 2011 .

[13]  H. Brouwers,et al.  Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors and to save energy in Dutch houses , 2011 .

[14]  Valentina Serra,et al.  Improving thermal comfort conditions by means of PCM glazing systems , 2013 .

[15]  D. Feldman,et al.  Latent heat storage in concrete , 1989 .

[16]  Helmut E. Feustel,et al.  Thermal Performance of Phase Change Wallboard for Residential Cooling Application , 1997 .

[17]  Francesco Goia,et al.  Possibilities for characterization of a PCM window system using large scale measurements , 2013 .

[18]  M. Hadjieva,et al.  Composite salt-hydrate concrete system for building energy storage , 2000 .

[19]  Arun S. Mujumdar,et al.  Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES) , 2013 .

[20]  Dan Zhou,et al.  Review on thermal energy storage with phase change materials (PCMs) in building applications , 2012 .

[21]  M. Sanchez,et al.  Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content , 2011 .

[22]  Haifeng Guo,et al.  A new kind of phase change material (PCM) for energy-storing wallboard , 2008 .

[23]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[24]  Jianlei Niu,et al.  Performance of cooled-ceiling operating with MPCM slurry , 2009 .

[25]  Joseph Virgone,et al.  Experimental investigation of wallboard containing phase change material: Data for validation of numerical modeling , 2009 .

[26]  D. Bentz,et al.  Potential applications of phase change materials in concrete technology , 2007 .

[27]  Luisa F. Cabeza,et al.  Building integration of PCM for natural cooling of buildings , 2013 .

[28]  Luisa F. Cabeza,et al.  Use of microencapsulated PCM in buildings and the effect of adding awnings , 2012 .

[29]  Hongxing Yang,et al.  An experimental study of the thermal performance of a novel photovoltaic double-skin facade in Hong Kong , 2013 .

[30]  A. Moret Rodrigues,et al.  Solar and visible optical properties of glazing systems with venetian blinds: Numerical, experimental and blind control study , 2014 .

[31]  Paulo Santos,et al.  Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency , 2013 .

[32]  Martin Belusko,et al.  Designing a PCM storage system using the effectiveness-number of transfer units method in low energy cooling of buildings , 2012 .

[33]  Xing Jin,et al.  Thermal analysis of PCM-filled glass windows in hot summer and cold winter area , 2016 .

[34]  Yusuf Ali Kara,et al.  Performance of coupled novel triple glass unit and pcm wall , 2012 .

[35]  Pingfang Hu,et al.  A simplified dynamic model of double layers shape-stabilized phase change materials wallboards , 2013 .

[36]  Yi Jiang,et al.  Thermal storage and nonlinear heat-transfer characteristics of PCM wallboard , 2008 .

[37]  Romeu Vicente,et al.  Numerical evaluation of a phase change material–shutter using solar energy for winter nighttime indoor heating , 2014 .

[38]  Esam M. Alawadhi,et al.  Using phase change materials in window shutter to reduce the solar heat gain , 2012 .

[39]  André Bontemps,et al.  Realization, test and modelling of honeycomb wallboards containing a Phase Change Material , 2011 .

[40]  Peng Zhang,et al.  Preparation and thermal characterization of paraffin/metal foam composite phase change material , 2013 .

[41]  Andreas K. Athienitis,et al.  Investigation of the Thermal Performance of a Passive Solar Test-Room with Wall Latent Heat Storage , 1997 .

[42]  Yi Jiang,et al.  Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings , 2006 .

[43]  Fariborz Haghighat,et al.  Thermal energy storage with phase change material—A state-of-the art review , 2014 .

[44]  Svend Svendsen,et al.  Energy performance of glazings and windows , 2001 .

[45]  Sunil Kumar Singal,et al.  Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material , 2008 .

[46]  W. Lu,et al.  Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs) , 2010 .

[47]  L. Cabeza,et al.  Heat and cold storage with PCM: An up to date introduction into basics and applications , 2008 .

[48]  André Bontemps,et al.  Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material , 2006 .

[49]  Fernanda Rodrigues,et al.  Development of a window shutter with phase change materials: Full scale outdoor experimental approach , 2015 .

[50]  Arild Gustavsen,et al.  Windows in the Buildings of Tomorrow; Energy Losers or Energy Gainers? , 2013 .

[51]  Valentina Serra,et al.  Characterization of the optical properties of a PCM glazing system , 2012 .

[52]  Luisa F. Cabeza,et al.  Experimental study of using PCM in brick constructive solutions for passive cooling , 2010 .

[53]  D. Feldman,et al.  Control aspects of latent heat storage and recovery in concrete , 2000 .

[54]  H. Manz,et al.  TIM–PCM external wall system for solar space heating and daylighting , 1997 .

[55]  Oliver Kornadt,et al.  Temperature reduction due to the application of phase change materials , 2008 .

[56]  Tian-Peng Wang,et al.  A model of the long-wave radiation heat transfer through a glazing , 2013 .

[57]  Laurent Royon,et al.  Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings , 2013 .

[58]  S. Kalaiselvam,et al.  Sustainable thermal energy storage technologies for buildings: A review , 2012 .

[59]  S. C. Kaushik,et al.  DEVELOPMENT OF PHASE CHANGE MATERIALS BASED MICROENCAPSULATED TECHNOLOGY FOR BUILDINGS: A REVIEW , 2011 .

[60]  Romeu Vicente,et al.  Brick masonry walls with PCM macrocapsules: An experimental approach , 2014 .

[61]  Alessandro Prada,et al.  Passive performance of glazed components in heating and cooling of an open-space office under controlled indoor thermal comfort , 2014 .

[62]  Luisa F. Cabeza,et al.  Thermal analysis of a ventilated facade with PCM for cooling applications , 2013 .

[63]  Subhasis Neogi,et al.  Advance Glazing System – Energy Efficiency Approach for Buildings a Review , 2014 .

[64]  Min Xiao,et al.  Thermal performance of a high conductive shape-stabilized thermal storage material , 2001 .

[65]  Zhu Neng,et al.  Experimental study and evaluation of latent heat storage in phase change materials wallboards , 2007 .

[66]  Yusuf Ali Kara,et al.  Performance of coupled novel triple glass and phase change material wall in the heating season: An experimental study , 2012 .

[67]  D. Feldman,et al.  Energy storage composite with an organic PCM , 1989 .

[68]  Kamal Abdel Radi Ismail,et al.  Parametric study on composite and PCM glass systems , 2002 .

[69]  Kamal Abdel Radi Ismail,et al.  Comparison between PCM filled glass windows and absorbing gas filled windows , 2008 .

[70]  Frédéric Kuznik,et al.  Numerical study of the influence of the convective heat transfer on the dynamical behaviour of a phase change material wall , 2011 .

[71]  Francesco Goia Thermo-physical behaviour and energy performance assessment of PCM glazing system configurations: A numerical analysis , 2012 .

[72]  Marcel Lacroix,et al.  Numerical simulation of a multi-layer latent heat thermal energy storage system , 1998 .

[73]  D. Feldman,et al.  Development and application of organic phase change mixtures in thermal storage gypsum wallboard , 1995 .

[74]  C. Poon,et al.  Use of phase change materials for thermal energy storage in concrete: An overview , 2013 .

[75]  Luigi Marletta,et al.  A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings , 2013 .

[76]  Esam M. Alawadhi,et al.  Thermal analysis of a building brick containing phase change material , 2008 .

[77]  Yvan Dutil,et al.  Experimental study of small-scale solar wall integrating phase change material , 2012 .

[78]  Valentina Serra,et al.  Experimental Analysis of an Advanced Dynamic Glazing Prototype Integrating PCM and Thermotropic Layers , 2014 .

[79]  Yongping Yang,et al.  Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves , 2011 .

[80]  Panayiotis A. Kyriacou,et al.  Experimental and numerical investigations of the optical and thermal aspects of a PCM-glazed unit , 2013 .

[81]  Vítor Leal,et al.  Characterization of thermal performance and nominal heating gap of the residential building stock using the EPBD-derived databases: The case of Portugal mainland , 2014 .

[82]  A. Sharma,et al.  Numerical heat transfer studies of PCMs used in a box-type solar cooker , 2008 .

[83]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[84]  Xin Wang,et al.  Review on thermal performance of phase change energy storage building envelope , 2009 .

[85]  E. Ghanbari,et al.  Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard , 1991 .

[86]  Beat Lehmann,et al.  Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings , 2004 .

[87]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[88]  D. Feldman,et al.  Absorption of phase change materials in concrete , 1992 .

[89]  Kamal Abdel Radi Ismail,et al.  Thermally effective windows with moving phase change material curtains , 2001 .

[90]  Luigi Marletta,et al.  Simulation of a ventilated cavity to enhance the effectiveness of PCM wallboards for summer thermal comfort in buildings , 2014 .

[91]  Rasmus Lund Jensen,et al.  Dynamic heat storage and cooling capacity of a concrete deck with PCM and thermally activated building system , 2012 .

[92]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[93]  H. Weinlaeder,et al.  Monitoring results of an interior sun protection system with integrated latent heat storage , 2011 .

[94]  Mohammed M. Farid,et al.  A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials , 2021, Thermal Energy Storage with Phase Change Materials.

[95]  Joseph Virgone,et al.  Optimization of a Phase Change Material Wallboard for Building Use , 2008 .

[96]  Mario A. Medina,et al.  Development of a thermally enhanced frame wall with phase‐change materials for on‐peak air conditioning demand reduction and energy savings in residential buildings , 2005 .

[97]  S. M. Hasnain Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques , 1998 .

[98]  Arild Gustavsen,et al.  Phase Change Materials for Building Applications: A State-of-the-Art Review , 2010 .

[99]  K Darkwa,et al.  Simulation of an integrated PCM–wallboard system , 2003 .

[100]  José María Sala,et al.  Analysis of different models to estimate energy savings related to windows in residential buildings , 2009 .

[101]  Matthias Haase,et al.  A numerical model to evaluate the thermal behaviour of PCM glazing system configurations , 2012 .

[102]  Mohamed Khayet,et al.  Experimental tile with phase change materials (PCM) for building use , 2011 .

[103]  Zhang Yinping,et al.  A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials , 1999 .

[104]  A. Campos-Celador,et al.  Ventilated active façades with PCM , 2013 .

[105]  Per Heiselberg,et al.  Review of thermal energy storage technologies based on PCM application in buildings , 2013 .

[106]  A. Oliva,et al.  Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction , 1998 .

[107]  Valentina Serra,et al.  Experimental analysis of the energy performance of a full-scale PCM glazing prototype , 2014 .

[108]  Changying Zhao,et al.  Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications , 2011 .

[109]  Kunping Lin,et al.  Thermal analysis of a direct-gain room with shape-stabilized PCM plates , 2008 .

[110]  Michele Zinzi,et al.  Simplified algorithms for the Italian energy rating scheme for fenestration in residential buildings , 2001 .

[111]  R. Kedl Conventional Wallboard With Latent Heat Storage For Passive Solar Applications , 1990, Proceedings of the 25th Intersociety Energy Conversion Engineering Conference.

[112]  Joseph Virgone,et al.  In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard , 2011 .

[113]  K. Peippo,et al.  An organic PCM storage system with adjustable melting temperature , 1991 .

[114]  Luisa F. Cabeza,et al.  Use of microencapsulated PCM in concrete walls for energy savings , 2007 .

[115]  D. Christoffers,et al.  Seasonal shading of vertical south-facades with prismatic panes , 1996 .

[116]  J. Fricke,et al.  PCM-facade-panel for daylighting and room heating , 2005 .

[117]  V. V. Tyagi,et al.  PCM thermal storage in buildings: A state of art , 2007 .

[118]  Nasrudin Abd Rahim,et al.  Review of PCM based cooling technologies for buildings , 2012 .