Unradiogenic lead in Earth/'s upper mantle

[1]  S. Hart,et al.  Domains of depleted mantle: New evidence from hafnium and neodymium isotopes , 2011 .

[2]  B. Wood,et al.  Volatile accretion history of the Earth , 2010, Nature.

[3]  B. Wood,et al.  The lead isotopic age of the Earth can be explained by core formation alone , 2010, Nature.

[4]  F. Albarède Volatile accretion history of the terrestrial planets and dynamic implications , 2009, Nature.

[5]  A. Hofmann The enduring lead paradox , 2008 .

[6]  A. Makishima,et al.  Highly unradiogenic lead isotope ratios from the Horoman peridotite in Japan , 2008 .

[7]  D. Kuzmin,et al.  The Earth’s missing lead may not be in the core , 2008, Nature.

[8]  Y. Lagabrielle,et al.  Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle dynamics beneath a slow spreading ridge , 2008 .

[9]  Albrecht W. Hofmann,et al.  Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean , 2008, Nature.

[10]  D. Pearson,et al.  A link between large mantle melting events and continent growth seen in osmium isotopes , 2007, Nature.

[11]  O. Alard,et al.  The scale and origin of the osmium isotope variations in mid-ocean ridge basalts , 2007 .

[12]  N. Rogers,et al.  Ancient melt extraction from the oceanic upper mantle revealed by Re–Os isotopes in abyssal peridotites from the Mid-Atlantic ridge , 2006 .

[13]  S. Hart,et al.  Mantle Pb paradoxes: the sulfide solution , 2005 .

[14]  B. Wood,et al.  Cooling of the Earth and core formation after the giant impact , 2005, Nature.

[15]  F. Albarède,et al.  The spectra of isotopic heterogeneities along the mid-Atlantic Ridge , 2005 .

[16]  W. Griffin,et al.  In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle , 2005, Nature.

[17]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[18]  H. Paulick,et al.  Seawater‐peridotite interactions: First insights from ODP Leg 209, MAR 15°N , 2003 .

[19]  F. Albarède Radiogenic ingrowth in systems with multiple reservoirs: applications to the differentiation of the mantle–crust system , 2001 .

[20]  J. Morgan,et al.  190Pt–186Os and 187Re–187Os systematics of abyssal peridotites , 2000 .

[21]  A. Koschinsky,et al.  Pb and Nd isotopes in NE Atlantic Fe-Mn crusts: Proxies for trace metal paleosources and paleocean circulation , 1999 .

[22]  Greg Hirth,et al.  Water in the oceanic upper mantle: implications for rheology , 1996 .

[23]  M. Manga Mixing of heterogeneities in the mantle: Effect of viscosity differences , 1996 .

[24]  B. Hanan,et al.  SrNdPb geochemical morphology between 10° and 17°N on the Mid-Atlantic Ridge: A new MORB isotope signature , 1991 .

[25]  S. Goldstein,et al.  The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb , 1990 .

[26]  P. Hamilton,et al.  Geochemical modeling of mantle differentiation and crustal growth , 1979 .

[27]  W. Bach,et al.  Fe–Ni–Co–O–S Phase Relations in Peridotite–Seawater Interactions , 2009 .

[28]  S. Hart,et al.  Re–Os Isotopes in the Horoman Peridotite: Evidence for Refertilization? , 2001 .

[29]  C. Allègre Comportement Des Systemes U-Th-Pb Dans Le Manteau Superieur Et Modele d'Evolution De Ce Dernier Au Cours Des Temps Geologiques , 1968 .