Evolution of Sound Localization in Mammals

The ability to locate the source of a sound too brief to be either scanned or tracked using head or pinna movements is of obvious advantage to an animal. Since most brief sounds are made by other animals, the ability to localize such sounds enables an animal to approach or avoid other animals in its immediate environment. Moreover, it can be used to direct the eyes, thus bringing another sense to bear upon the source of the sound. Given the value of sound localization to the survival of an animal, it is not surprising that the need to localize sound has been implicated as a primary source of selective pressure in the evolution of mammalian hearing (Masterton et al. 1969; Masterton 1974).

[1]  J. E. Rose,et al.  Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. , 1967, Journal of neurophysiology.

[2]  R. Butler,et al.  The spatial attributes of stimulus frequency in the median sagittal plane and their role in sound localization. , 1983, American journal of otolaryngology.

[3]  S. Green,et al.  Variation of Vocal Pattern with Social Situation in the Japanese Monkey (Macaca fuscata): A Field Study * , 1975 .

[4]  H. Heffner,et al.  Sound localization in large mammals: localization of complex sounds by horses. , 1984, Behavioral neuroscience.

[5]  R A Butler,et al.  An analysis of the monaural displacement of sound in space , 1987, Perception & psychophysics.

[6]  R A Butler,et al.  Monaural localization of low-pass noise bands in the horizontal plane. , 1975, The Journal of the Acoustical Society of America.

[7]  H E Heffner,et al.  Sound localization, use of binaural cues and the superior olivary complex in pigs. , 1989, Brain, behavior and evolution.

[8]  E G Wever,et al.  Sound conduction in the dolphin ear. , 1970, The Journal of the Acoustical Society of America.

[9]  John D. Pettigrew,et al.  Frequency dependence of directional amplification at the cat's pinna , 1984, Hearing Research.

[10]  Masterton Rb Adaptation for sound localization in the ear and brainstem of mammals. , 1974 .

[11]  K. S. Norris,et al.  Sound transmission in the porpoise head. , 1974, The Journal of the Acoustical Society of America.

[12]  Steiner Be,et al.  Control of pinna movements and sensorimotor register in cat superior colliculus. , 1981 .

[13]  Robert A. Butler,et al.  The Influence of the External and Middle Ear on Auditory Discriminations , 1975 .

[14]  A D Musicant,et al.  The influence of pinnae-based spectral cues on sound localization. , 1984, The Journal of the Acoustical Society of America.

[15]  E. Zimmermann,et al.  THE VOCAL REPERTOIRE OF ADULT TREE SHREWS (TUPAIA BELANGERI) , 1989 .

[16]  Jean K. Moore The human auditory brain stem: A comparative view , 1987, Hearing Research.

[17]  R. Altschuler,et al.  Localization of enkephalin-like immunoreactivity in acetylcholinesterase-positive cells in the guinea-pig lateral superior olivary complex that project to the cochlea , 1983, Neuroscience.

[18]  J. Boudreau,et al.  Binaural interaction in the cat superior olive S segment. , 1967, Journal of neurophysiology.

[19]  R A Butler,et al.  Spectral cues provided by the pinna for monaural localization in the horizontal plane , 1981, Perception & psychophysics.

[20]  Z M Fuzessery,et al.  Speculations on the role of frequency in sound localization. , 1986, Brain, behavior and evolution.

[21]  R A Butler,et al.  The spatial attributes of stimulus frequency and their role in monaural localization of sound in the horizontal plane , 1980, Perception & psychophysics.

[22]  H. Heffner,et al.  Sound localization acuity in the cat: Effect of azimuth, signal duration, and test procedure , 1988, Hearing Research.

[23]  R A Butler,et al.  The contribution of the near and far ear toward localization of sound in the sagittal plane. , 1988, The Journal of the Acoustical Society of America.

[24]  Robert A. Butler,et al.  The influence of stimulus bandwidth on localization of sound in space , 1976 .

[25]  E. Boring Sensation and Perception. (Scientific Books: Sensation and Perception in the History of Experimental Psychology) , 1943 .

[26]  R. J. Barfield,et al.  Introduction to the Symposium: Ultrasonic Communication in Rodents , 1979 .

[27]  O. S. Wakeford,et al.  Lateralization of tonal stimuli by the cat. , 1974, The Journal of the Acoustical Society of America.

[28]  I. T. Diamond,et al.  EFFECTS OF AUDITORY CORTEX ABLATION ON DISCRIMINATION OF SMALL BINAURAL TIME DIFFERENCES. , 1964, Journal of neurophysiology.

[29]  R. Butler,et al.  Factors that influence the localization of sound in the vertical plane. , 1968, The Journal of the Acoustical Society of America.

[30]  B Masterton,et al.  Contribution of neocortex to sound localization in opossum (Didelphis virginiana). , 1972, Journal of neurophysiology.

[31]  D. M. Green,et al.  Directional sensitivity of sound-pressure levels in the human ear canal. , 1989, The Journal of the Acoustical Society of America.

[32]  J M Terhune,et al.  Directional hearing of a harbor seal in air and water. , 1974, The Journal of the Acoustical Society of America.

[33]  H. Heffner,et al.  Localization of noise, use of binaural cues, and a description of the superior olivary complex in the smallest carnivore, the least weasel (Mustela nivalis). , 1987, Behavioral neuroscience.

[34]  Charles H. Brown,et al.  Localization of pure tones by Old World monkeys , 1978 .

[35]  D. Webster Ear structure and function in modern mammals. , 1966, American zoologist.

[36]  John T. Jacobson,et al.  The Auditory brainstem response , 1985 .

[37]  James S. White,et al.  The dual origins of the olivocochlear bundle in the albino rat , 1983, The Journal of comparative neurology.

[38]  R. Galamboš,et al.  Microelectrode study of superior olivary nuclei. , 1959, The American journal of physiology.

[39]  Robert A. Butler,et al.  The bandwidth effect on monaural and binaural localization , 1986, Hearing Research.

[40]  G. F. Kuhn Model for the interaural time differences in the azimuthal plane , 1977 .

[41]  H. Heffner,et al.  Hearing in Glires: Domestic rabbit, cotton rat, feral house mouse, and kangaroo rat , 1980 .

[42]  H. Schnitzler,et al.  The role of pinna movement for the localization of vertical and horizontal wire obstacles in the greater horseshoe bat, Rhinolopus ferrumequinum , 1988 .

[43]  H. Heffner,et al.  Hearing in domestic pigs (Sus scrofa) and goats (Capra hircus) , 1990, Hearing Research.

[44]  Robert A. Butler,et al.  The psychophysical basis of monaural localization , 1984, Hearing Research.

[45]  P. Marler,et al.  Characteristics of Some Animal Calls , 1955, Nature.

[46]  M. Konishi Hearing, Single-Unit Analysis, and Vocalizations in Songbirds , 1969, Science.

[47]  W. H. Kane On Cause and Effect in Biology. , 1962, Science.

[48]  D. Moody,et al.  Vertical and horizontal sound localization in primates. , 1982, The Journal of the Acoustical Society of America.

[49]  R. Irving,et al.  The superior olivary complex and audition: A comparative study , 1967, The Journal of comparative neurology.

[50]  I. T. Diamond,et al.  Chapter 18 – HEARING: CENTRAL NEURAL MECHANISMS , 1973 .

[51]  G. C. Thompson,et al.  Neuroanatomical basis of binaural phase-difference analysis for sound localization: a comparative study. , 1975, Journal of comparative and physiological psychology.

[52]  D. Houben,et al.  Auditory lateralization in monkeys: an examination of two cues serving directional hearing. , 1979, The Journal of the Acoustical Society of America.

[53]  J. Kelly,et al.  Auditory cortex lesions and discrimination of spatial location by the rat , 1978, Brain Research.

[54]  J M Harrison,et al.  Intensity changes at the ear as a function of the azimuth of a tone source: a comparative study. , 1970, The Journal of the Acoustical Society of America.

[55]  D. McFadden,et al.  Lateralization of high frequencies based on interaural time differences. , 1976, The Journal of the Acoustical Society of America.

[56]  J. Brugge,et al.  Progress in neurophysiology of sound localization. , 1985, Annual review of psychology.

[57]  G. Henning Detectability of interaural delay in high-frequency complex waveforms. , 1974, The Journal of the Acoustical Society of America.

[58]  A. Popper,et al.  Sound localization by the bottlenose porpoise Tursiops truncatus. , 1975, The Journal of experimental biology.

[59]  E. Mayr Cause and Effect in Biology: Kinds of causes, predictability, and teleology are viewed by a practicing biologist , 1961 .

[60]  D B Moody,et al.  Localization of noise bands by Old World monkeys. , 1980, The Journal of the Acoustical Society of America.

[61]  A D Musicant,et al.  Influence of monaural spectral cues on binaural localization. , 1985, The Journal of the Acoustical Society of America.

[62]  Simon Carlile,et al.  Directional properties of the auditory periphery in the guinea pig , 1987, Hearing Research.

[63]  E. B. Newman,et al.  The localization of actual sources of sound. , 1936 .

[64]  J M Terhune,et al.  Localization of pure tones and click trains by untrained humans. , 1985, Scandinavian audiology.

[65]  W. D. Neff,et al.  Localization of pure tones. , 1973, The Journal of the Acoustical Society of America.

[66]  H. Heffner,et al.  Vestigial hearing in a fossorial mammal, the pocket gopher (Geomys bursarius) , 1990, Hearing Research.

[67]  J. Kelly,et al.  Effects of auditory cortical lesions on pure-tone sound localization by the albino rat. , 1986, Behavioral neuroscience.

[68]  A. Hughes The Topography of Vision in Mammals of Contrasting Life Style: Comparative Optics and Retinal Organisation , 1977 .

[69]  D. Irvine Interaural intensity differences in the cat: Changes in sound pressure level at the two ears associated with azimuthal displacements in the frontal horizontal plane , 1987, Hearing Research.

[70]  Russell L. Martin,et al.  The auditory spatial acuity of the domestic cat in the inter aural horizontal and median vertical planes , 1987, Hearing Research.

[71]  A. Starr,et al.  Lateralization performance of squirrel monkey (Samiri sciureus) to binaural click signals. , 1972, Journal of neurophysiology.

[72]  H. Heffner,et al.  Hearing in two cricetid rodents: wood rat (Neotoma floridana) and grasshopper mouse (Onychomys leucogaster). , 1985, Journal of comparative psychology.

[73]  M. Kiley,et al.  The vocalizations of ungulates, their causation and function. , 2010 .

[74]  R. Butler,et al.  Spectral cues utilized in the localization of sound in the median sagittal plane. , 1977, The Journal of the Acoustical Society of America.

[75]  H. Heffner,et al.  Hearing in the elephant (Elephas maximus): absolute sensitivity, frequency discrimination, and sound localization. , 1982, Journal of comparative and physiological psychology.

[76]  John D. Hall,et al.  Auditory Thresholds of a Fresh Water Dolphin, Inia geoffrensis Blainville , 1972 .

[77]  H. Heffner,et al.  Sound localization and use of binaural cues by the gerbil (Meriones unguiculatus). , 1988, Behavioral neuroscience.

[78]  D. Green An introduction to hearing , 1976 .

[79]  Russell L. Martin,et al.  Interaural sound pressure level differences associated with sound-source locations in the frontal hemifield of the domestic cat , 1989, Hearing Research.

[80]  B Masterton,et al.  The evolution of human hearing. , 1969, The Journal of the Acoustical Society of America.

[81]  R. Butler,et al.  Localization of tonal stimuli in the vertical plane. , 1968, The Journal of the Acoustical Society of America.

[82]  D. P. Phillips,et al.  Directionality of sound pressure transformation at the cat's pinna , 1982, Hearing Research.

[83]  Dr. Gerald Fleischer Evolutionary Principles of the Mammalian Middle Ear , 1979, Advances in Anatomy, Embryology and Cell Biology.

[84]  Henry E. Heffner,et al.  Sound localization in wild Norway rats (Rattus norvegicus) , 1985, Hearing Research.

[85]  G. Pollak,et al.  Determinants of sound location selectivity in bat inferior colliculus: a combined dichotic and free-field stimulation study. , 1985, Journal of neurophysiology.

[86]  H. Siegmund,et al.  Effects of motor denervation of the external ear muscles on the audio-visual targeting reflex in cats. , 1981, Acta neurobiologiae experimentalis.

[87]  W. Yost,et al.  Discrimination of interaural differences of level as a function of frequency. , 1988, The Journal of the Acoustical Society of America.

[88]  S. Erulkar Comparative aspects of spatial localization of sound. , 1972, Physiological reviews.

[89]  J. Ostwald,et al.  Different origins of cochlear efferents in some bat species, rats, and guinea pigs , 1987, The Journal of comparative neurology.

[90]  H. Heffner,et al.  Localization of tones by horses: use of binaural cues and the role of the superior olivary complex. , 1986, Behavioral neuroscience.

[91]  G. Sales,et al.  Ultrasonic Communication by Animals , 1974 .

[92]  H. Heffner,et al.  Sound localization in a predatory rodent, the northern grasshopper mouse (Onychomys leucogaster). , 1988, Journal of comparative psychology.

[93]  C D West,et al.  The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. , 1985, The Journal of the Acoustical Society of America.