Partial Derivatives of the Inverse Mass Matrix of Multibody Systems via Its Factorization

A closed expression for repeated partial derivatives of the inverse mass matrix is developed. It rests on the factorization of the inverse mass matrix in terms of a single configuration-dependent block-diagonal matrix. Thereupon, partial derivatives of the inverse mass matrix are given in terms of derivatives of the diagonal blocks. It turns out that the derivatives are nonvanishing only for a single block of this block-diagonal matrix. The result for open kinematic chains is extended to the mass matrix of mechanisms with kinematic loops

[1]  R. Featherstone The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .

[2]  S. S. Kim,et al.  A General and Efficient Method for Dynamic Analysis of Mechanical Systems Using Velocity Transformations , 1986 .

[3]  Giuseppe Rodriguez,et al.  Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics , 1987, IEEE Journal on Robotics and Automation.

[4]  P. Maisser,et al.  A differential-geometric approach to the multi body system dynamics , 1991 .

[5]  K. Anderson An order n formulation for the motion simulation of general multi-rigid-body constrained systems , 1992 .

[6]  Guillermo Rodríguez-Ortiz,et al.  Spatial operator factorization and inversion of the manipulator mass matrix , 1992, IEEE Trans. Robotics Autom..

[7]  Abhinandan Jain,et al.  Linearization of manipulator dynamics using spatial operators , 1993, IEEE Trans. Syst. Man Cybern..

[8]  Frank Chongwoo Park,et al.  A geometrical formulation of the dynamical equations describing kinematic chains , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[9]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[10]  Amir Fijany,et al.  Parallel O(log N) algorithms for computation of manipulator forward dynamics , 1994, IEEE Trans. Robotics Autom..

[11]  Frank Chongwoo Park,et al.  A Lie Group Formulation of Robot Dynamics , 1995, Int. J. Robotics Res..

[12]  Joel W. Burdick,et al.  Geometric Perspectives on the Mechanics and Control of Robotic Locomotion , 1996 .

[13]  Janusz,et al.  Geometrical Methods in Robotics , 1996, Monographs in Computer Science.

[14]  Subir Kumar Saha,et al.  A decomposition of the manipulator inertia matrix , 1997, IEEE Trans. Robotics Autom..

[15]  Frank Chongwoo Park,et al.  Coordinate-invariant algorithms for robot dynamics , 1999, IEEE Trans. Robotics Autom..

[16]  Richard M. Murray,et al.  Configuration Controllability of Simple Mechanical Control Systems , 1997, SIAM Rev..

[17]  F. Park,et al.  Symbolic formulation of closed chain dynamics in independent coordinates , 1999 .

[18]  Arjan van der Schaft,et al.  Dynamics and control of a class of underactuated mechanical systems , 1999, IEEE Trans. Autom. Control..

[19]  Ashitava Ghosal,et al.  Singularity and controllability analysis of parallel manipulators and closed-loop mechanisms , 2000 .

[20]  Kurt S. Anderson,et al.  Highly Parallelizable Low-Order Dynamics Simulation Algorithm for Multi-Rigid-Body Systems , 2000 .

[21]  Werner Schiehlen,et al.  RECURSIVE KINEMATICS AND DYNAMICS FOR PARALLEL STRUCTURED CLOSED-LOOP MULTIBODY SYSTEMS* , 2001 .

[22]  Kurt S. Anderson,et al.  Recursive sensitivity analysis for constrained multi-rigid-body dynamic systems design optimization , 2002 .

[23]  K. Anderson,et al.  Analytical Fully-Recursive Sensitivity Analysis for Multibody Dynamic Chain Systems , 2002 .

[24]  P. Maisser,et al.  A Lie-Group Formulation of Kinematics and Dynamics of Constrained MBS and Its Application to Analytical Mechanics , 2003 .

[25]  Andreas Müller,et al.  Elimination of Redundant Cut Joint Constraints for Multibody System Models , 2004 .

[26]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.