Fixed-Order Robust $H_{\infty}$ Controller Design With Regional Pole Assignment

In this technical note, the problem of designing fixed-order robust Hinfin controllers is considered for linear systems affected by polytopic uncertainty. A polynomial method is employed to design a fixed-order controller that guarantees that all the closed-loop poles reside within a given region of the complex plane. In order to utilize the freedom of the controller design, an Hinfin performance specification is also enforced by using the equivalence between robust stability and Hinfin norm constraint. The design problem is formulated as a linear matrix inequality (LMI) constraint whose decision variables are controller parameters. An illustrative example demonstrates the feasibility of the proposed design methods.

[1]  Dimitri Peaucelle,et al.  Positive polynomial matrices and improved LMI robustness conditions , 2003, Autom..

[2]  Didier Henrion,et al.  LMI optimization for fixed-order H/sub /spl infin// controller design , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[3]  Pascal Gahinet,et al.  H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[4]  Huibert Kwakernaak,et al.  Robust control and H∞-optimization - Tutorial paper , 1993, Autom..

[5]  Michael Sebek,et al.  Positive polynomials and robust stabilization with fixed-order controllers , 2003, IEEE Trans. Autom. Control..

[6]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[7]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[8]  Shankar P. Bhattacharyya,et al.  Robust stability and performance with fixed-order controllers , 1999, Autom..

[9]  Vladimír Kučera,et al.  Diophantine equations in control - A survey , 1993, Autom..

[10]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[11]  Joe H. Chow,et al.  Low-order controller design for SISO systems using coprime factors and LMI , 2000, IEEE Trans. Autom. Control..

[12]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[13]  D. Henrion FrAO 1-1 LMI optimization , for fixed-order H , controller design , 2003 .

[14]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[15]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[16]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[17]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[18]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[19]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[20]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[21]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[22]  M. Corless,et al.  Systems with structured uncertainty: relations between quadratic and robust stability , 1993, IEEE Trans. Autom. Control..