Algebraically Simple Chaotic Flows
暂无分享,去创建一个
[1] J. C. Sprotta. Some simple chaotic jerk functions , 1997 .
[2] Hans Peter Gottlieb,et al. What is the Simplest Jerk Function that Gives Chaos , 1996 .
[3] A. Iserles. Numerical recipes in C—the art of scientific computing , by W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. Pp 735. £27·50. 1988. ISBN 0-521-35465-X (Cambridge University Press) , 1989, The Mathematical Gazette.
[4] S. Schot,et al. Jerk: The time rate of change of acceleration , 1978 .
[5] Leon O. Chua,et al. The double scroll , 1985 .
[6] Baron,et al. The Conservative case , 1959 .
[7] A. Baglin,et al. A dynamical instability as a driving mechanism for stellar oscillations , 1985 .
[8] Analyse et synthèse de systèmes à dynamique chaotique en termes de circuits de rétroaction (feedback) , 1996 .
[9] O. Rössler. CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS , 1979 .
[10] René Thomas,et al. DETERMINISTIC CHAOS SEEN IN TERMS OF FEEDBACK CIRCUITS: ANALYSIS, SYNTHESIS, "LABYRINTH CHAOS" , 1999 .
[11] Julien Clinton Sprott,et al. A new class of chaotic circuit , 2000 .
[12] J.-M. Malasoma. What is the simplest dissipative chaotic jerk equation which is parity invariant , 2000 .
[13] Julien Clinton Sprott,et al. On the probability of chaos in large dynamical systems: A Monte Carlo study , 1999 .
[14] William H. Press,et al. Numerical recipes in C , 2002 .
[15] D. W. Moore,et al. A Thermally Excited Non-Linear Oscillator , 1966 .
[16] M. Komuro. Birth and death of the double scroll , 1985, IEEE Conference on Decision and Control.
[17] A. Tamasevicius,et al. Double scroll in a simple '2D' chaotic oscillator , 1996 .
[18] J. Sprott,et al. Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[19] Ivars Peterson,et al. Books-Received - Newton's Clock - Chaos in the Solar System , 1995 .
[20] Jack Heidel,et al. Nonchaotic behaviour in three-dimensional quadratic systems II. The conservative case , 1999 .
[21] Ralf Eichhorn,et al. Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows , 1998 .
[22] Alain Arneodo,et al. Oscillators with chaotic behavior: An illustration of a theorem by Shil'nikov , 1982 .
[23] L. P. Šil'nikov,et al. A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .
[24] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[25] Ahmed S. Elwakil,et al. Two Modified for Chaos Negative Impedance Converter Op Amp Oscillators with Symmetrical and Antisymmetrical Nonlinearities , 1998 .
[26] Stefan J. Linz,et al. Nonlinear dynamical models and jerky motion , 1997 .
[27] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[28] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[29] O. Rössler. An equation for continuous chaos , 1976 .
[30] Julien Clinton Sprott,et al. Simplest dissipative chaotic flow , 1997 .
[31] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[32] Hoover. Remark on "Some simple chaotic flows" , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[33] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[34] Hans Christian von Baeyer. All Shook Up , 1998 .
[35] S. J. Linz. No-chaos criteria for certain jerky dynamics , 2000 .
[36] D. D. Dixon,et al. Continuous “chaotic” dynamics in two dimensions , 1993 .
[37] J. Sprott. Strange Attractors: Creating Patterns in Chaos , 1993 .
[38] Julien Clinton Sprott,et al. Predicting the dimension of strange attractors , 1994 .
[39] J. Yorke,et al. Period Three Implies Chaos , 1975 .
[40] Alain Arneodo,et al. Possible new strange attractors with spiral structure , 1981 .
[41] M. Hirsch,et al. Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .
[42] Alain Arneodo,et al. Transition to stochasticity for a class of forced oscillators , 1979 .
[43] James A. Yorke,et al. Numerical solution of a generalized eigenvalue problem for even mappings , 1979 .
[44] Jack Heidel,et al. ERRATUM: Non-chaotic behaviour in three-dimensional quadratic systems , 1997 .
[45] Julien Clinton Sprott,et al. How common is chaos , 1993 .
[46] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .
[47] Julien Clinton Sprott,et al. Automatic generation of strange attractors , 1993, Comput. Graph..
[48] J. Barrow-Green. Poincare and the Three Body Problem , 1996 .
[49] Julien Clinton Sprott,et al. Elementary chaotic flow , 1999 .
[50] R. Baker. All shook up , 1990, Nature.
[51] Robert M. May,et al. Simple mathematical models with very complicated dynamics , 1976, Nature.
[52] Sebastian Fischer,et al. KLEINER-ATTRACTOR IN A PIECEWISE-LINEAR C1-SYSTEM , 1999 .
[53] Vesely,et al. Canonical dynamics of the Nosé oscillator: Stability, order, and chaos. , 1986, Physical review. A, General physics.
[54] Julien Clinton Sprott,et al. Simple chaotic systems and circuits , 2000 .
[55] Colin Sparrow,et al. Local and global behavior near homoclinic orbits , 1984 .
[56] Ömer Morgül,et al. Inductorless realisation of Chua oscillator , 1995 .