Neural activity imaging with genetically encoded calcium indicators.

[1]  L. Tian,et al.  Imaging neuronal activity with genetically encoded calcium indicators. , 2012, Cold Spring Harbor protocols.

[2]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.

[3]  Andreas T. Schaefer,et al.  Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo , 2011, Nature Neuroscience.

[4]  Atsushi Miyawaki,et al.  Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. , 2011, Annual review of biochemistry.

[5]  Junichi Nakai,et al.  Genetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish , 2011, Proceedings of the National Academy of Sciences.

[6]  Amy E Palmer,et al.  Design and application of genetically encoded biosensors. , 2011, Trends in biotechnology.

[7]  Lin Tian,et al.  Imaging Light Responses of Targeted Neuron Populations in the Rodent Retina , 2011, The Journal of Neuroscience.

[8]  J. Betley,et al.  Adeno-associated viral vectors for mapping, monitoring, and manipulating neural circuits. , 2011, Human gene therapy.

[9]  Richard Axel,et al.  A dimorphic pheromone circuit in Drosophila from sensory input to descending output , 2010, Nature.

[10]  Ethan K. Scott,et al.  Filtering of Visual Information in the Tectum by an Identified Neural Circuit , 2010, Science.

[11]  Konstantin A Lukyanov,et al.  Near-infrared fluorescent proteins , 2010, Nature Methods.

[12]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[13]  Lin Tian,et al.  Functional imaging of hippocampal place cells at cellular resolution during virtual navigation , 2010, Nature Neuroscience.

[14]  Takeharu Nagai,et al.  Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano , 2010, Nature Methods.

[15]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[16]  L. Looger,et al.  The Role of the TRP Channel NompC in Drosophila Larval and Adult Locomotion , 2010, Neuron.

[17]  Baljit S Khakh,et al.  Monitoring astrocyte calcium microdomains with improved membrane targeted GCaMP reporters. , 2010, Neuron glia biology.

[18]  Alexander Borst,et al.  Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila , 2010, Nature Neuroscience.

[19]  K. Deisseroth,et al.  Astrocytes Control Breathing Through pH-Dependent Release of ATP , 2010, Science.

[20]  Y. Freund,et al.  Automatic identification of fluorescently labeled brain cells for rapid functional imaging. , 2010, Journal of neurophysiology.

[21]  Baljit S Khakh,et al.  A genetically targeted optical sensor to monitor calcium signals in astrocyte processes , 2010, Nature Neuroscience.

[22]  Michael B. Reiser,et al.  Two-photon calcium imaging from motion-sensitive neurons in head-fixed Drosophila during optomotor walking behavior , 2010, Nature Methods.

[23]  M. Larkum,et al.  Frontiers in Neural Circuits Neural Circuits Methods Article , 2022 .

[24]  Junichi Nakai,et al.  Tissue-Tissue Interaction-Triggered Calcium Elevation Is Required for Cell Polarization during Xenopus Gastrulation , 2010, PloS one.

[25]  Eric Betzig,et al.  Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues , 2010, Nature Methods.

[26]  Jaime Grutzendler,et al.  Thinned-skull cranial window technique for long-term imaging of the cortex in live mice , 2010, Nature Protocols.

[27]  Michael Z. Lin,et al.  Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. , 2009, Chemistry & biology.

[28]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[29]  Leon Lagnado,et al.  A genetically-encoded reporter of synaptic activity in vivo , 2009, Nature Methods.

[30]  M. Häusser,et al.  Electrophysiology in the age of light , 2009, Nature.

[31]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[32]  Brendon O. Watson,et al.  Spike inference from calcium imaging using sequential Monte Carlo methods. , 2009, Biophysical journal.

[33]  Michael Z. Lin,et al.  Mammalian Expression of Infrared Fluorescent Proteins Engineered from a Bacterial Phytochrome , 2009, Science.

[34]  Kristin L. Hazelwood,et al.  Far-red fluorescent tags for protein imaging in living tissues. , 2009, The Biochemical journal.

[35]  Jasper Akerboom,et al.  Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design , 2009, Journal of Biological Chemistry.

[36]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[37]  David S. Greenberg,et al.  Automated correction of fast motion artifacts for two-photon imaging of awake animals , 2009, Journal of Neuroscience Methods.

[38]  Julie H. Simpson,et al.  Mapping and manipulating neural circuits in the fly brain. , 2009, Advances in genetics.

[39]  H. Sondermann,et al.  Structural basis for calcium sensing by GCaMP2. , 2008, Structure.

[40]  Damian J. Wallace,et al.  Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor , 2008, Nature Methods.

[41]  Norio Matsuki,et al.  Fast and accurate detection of action potentials from somatic calcium fluctuations. , 2008, Journal of neurophysiology.

[42]  L. Tian,et al.  Reporting neural activity with genetically encoded calcium indicators , 2008, Brain cell biology.

[43]  Alexander Borst,et al.  Fluorescence Changes of Genetic Calcium Indicators and OGB-1 Correlated with Neural Activity and Calcium In Vivo and In Vitro , 2008, The Journal of Neuroscience.

[44]  J. Nakai,et al.  References and Notes Supporting Online Material Materials and Methods Figs. S1 to S10 Table S1 References Movies S1 to S6 Encoding Gender and Individual Information in the Mouse Vomeronasal Organ , 2022 .

[45]  Junichi Nakai,et al.  Characterization and Subcellular Targeting of GCaMP-Type Genetically-Encoded Calcium Indicators , 2008, PloS one.

[46]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[47]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[48]  D. Piston,et al.  Fluorescent protein FRET: the good, the bad and the ugly. , 2007, Trends in biochemical sciences.

[49]  S. Lukyanov,et al.  Single fluorescent protein-based Ca2+ sensors with increased dynamic range , 2007, BMC biotechnology.

[50]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[51]  Oliver Griesbeck,et al.  Improved calcium imaging in transgenic mice expressing a troponin C–based biosensor , 2007, Nature Methods.

[52]  K. Svoboda,et al.  Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience , 2006, Neuron.

[53]  E. Yaksi,et al.  Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging , 2006, Nature Methods.

[54]  David Baker,et al.  Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. , 2006, Chemistry & biology.

[55]  Guy Salama,et al.  Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Alexander Borst,et al.  A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. , 2006, Biophysical journal.

[57]  T. Terwilliger,et al.  Engineering and characterization of a superfolder green fluorescent protein , 2006, Nature Biotechnology.

[58]  C. Landry,et al.  Alternative life histories shape brain gene expression profiles in males of the same population , 2005, Proceedings of the Royal Society B: Biological Sciences.

[59]  M. Ohkura,et al.  Genetically encoded bright Ca2+ probe applicable for dynamic Ca2+ imaging of dendritic spines. , 2005, Analytical chemistry.

[60]  M. Ohkura,et al.  Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein , 2005, The European journal of neuroscience.

[61]  Amy E Palmer,et al.  Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Karel Svoboda,et al.  Monitoring Neural Activity and [Ca2+] with Genetically Encoded Ca2+ Indicators , 2004, The Journal of Neuroscience.

[63]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Takeharu Nagai,et al.  Functional Fluorescent Ca2+ Indicator Proteins in Transgenic Mice under TET Control , 2004, PLoS biology.

[65]  Oliver Griesbeck,et al.  Genetically Encoded Indicators of Cellular Calcium Dynamics Based on Troponin C and Green Fluorescent Protein* , 2004, Journal of Biological Chemistry.

[66]  F. Roisen,et al.  Immunohistochemical localization of troponin-C in cultured neurons , 1983, Journal of Muscle Research & Cell Motility.

[67]  A. Miyawaki,et al.  Circularly permuted green fluorescent proteins engineered to sense Ca2+ , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[68]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[69]  R. Tsien,et al.  Circular permutation and receptor insertion within green fluorescent proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[70]  D. Helfman,et al.  Tropomyosin Localization Reveals Distinct Populations of Microfilaments in Neurites and Growth Cones , 1997, Molecular and Cellular Neuroscience.

[71]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[72]  A. Persechini,et al.  Detection in Living Cells of Ca2+-dependent Changes in the Fluorescence Emission of an Indicator Composed of Two Green Fluorescent Protein Variants Linked by a Calmodulin-binding Sequence , 1997, The Journal of Biological Chemistry.

[73]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[74]  W. Lehman,et al.  Troponin C in brain , 1975, Nature.