A three-stage hybrid approach for weight assignment in MADM ☆

[1]  Chih-Cheng Chen,et al.  Measuring departmental and overall regional performance: applying the multi-activity DEA model to Taiwan׳s cities/counties , 2017 .

[2]  Byeong Seok Ahn,et al.  The analytic hierarchy process with interval preference statements , 2017 .

[3]  Chiang Kao,et al.  Measurement and decomposition of the Malmquist productivity index for parallel production systems , 2017 .

[4]  Boon L. Lee,et al.  A network DEA quantity and quality-orientated production model: An application to Australian university research services , 2016 .

[5]  Chao Fu,et al.  A method of determining attribute weights in evidential reasoning approach based on incompatibility among attributes , 2015, Comput. Ind. Eng..

[6]  Wenbin Liu,et al.  Extended utility and DEA models without explicit input , 2014, J. Oper. Res. Soc..

[7]  Dong-Ling Xu,et al.  Interactive minimax optimisation for integrated performance analysis and resource planning , 2014, Comput. Oper. Res..

[8]  Salvatore Greco,et al.  Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.

[9]  Mehdi Toloo,et al.  The most efficient unit without explicit inputs: An extended MILP-DEA model , 2013 .

[10]  Mehdi Toloo,et al.  On finding the most BCC-efficient DMU: A new integrated MIP–DEA model , 2012 .

[11]  Z. Yue Approach to group decision making based on determining the weights of experts by using projection method , 2012 .

[12]  Ting-Yu Chen,et al.  Objective weights with intuitionistic fuzzy entropy measures and computational experiment analysis , 2011, Appl. Soft Comput..

[13]  Fang Xu,et al.  A study of DEA models without explicit inputs , 2011 .

[14]  Ting-Yu Chen,et al.  Determining objective weights with intuitionistic fuzzy entropy measures: A comparative analysis , 2010, Inf. Sci..

[15]  Tien-Chin Wang,et al.  Developing a fuzzy TOPSIS approach based on subjective weights and objective weights , 2009, Expert Syst. Appl..

[16]  Edmundas Kazimieras Zavadskas,et al.  A New Logarithmic Normalization Method in Games Theory , 2008, Informatica.

[17]  Wojciech Kotlowski,et al.  Additive Preference Model with Piecewise Linear Components Resulting from Dominance-Based Rough Set Approximations , 2006, ICAISC.

[18]  Ying-Ming Wang,et al.  A general multiple attribute decision-making approach for integrating subjective preferences and objective information , 2006, Fuzzy Sets Syst..

[19]  William W. Cooper,et al.  Introduction to Data Envelopment Analysis and Its Uses: With Dea-Solver Software and References , 2005 .

[20]  Milan Zeleny,et al.  Multiple Criteria Decision Making (MCDM) , 2004 .

[21]  Weixuan Xu,et al.  Estimating The Attribute Weights Through Evidential Reasoning And Mathematical Programming , 2004, Int. J. Inf. Technol. Decis. Mak..

[22]  Xiaozhan Xu,et al.  A note on the subjective and objective integrated approach to determine attribute weights , 2004, Eur. J. Oper. Res..

[23]  Charalambos L. Iacovou,et al.  Determining attribute weights using mathematical programming , 2003 .

[24]  P. Goodwin,et al.  Weight approximations in multi-attribute decision models , 2002 .

[25]  篠原 正明,et al.  William W.Cooper,Lawrence M.Seiford,Kaoru Tone 著, DATA ENVELOPMENT ANALYSIS : A Comprehensive Text with Models, Applications, References and DEA-Solver Software, Kluwer Academic Publishers, 2000年, 318頁 , 2002 .

[26]  John R. Doyle,et al.  A comparison of three weight elicitation methods: good, better, and best , 2001 .

[27]  Cláudia S. Sarrico,et al.  Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software , 2001, J. Oper. Res. Soc..

[28]  Cláudia S. Sarrico,et al.  Pitfalls and protocols in DEA , 2001, Eur. J. Oper. Res..

[29]  Saul I. Gass,et al.  The Analytic Hierarchy Process - An Exposition , 2001, Oper. Res..

[30]  Quan Zhang,et al.  An approach to multiple attribute decision making based on preference information on alternatives , 2001, Proceedings of the 34th Annual Hawaii International Conference on System Sciences.

[31]  Jian-Bo Yang,et al.  Minimax reference point approach and its application for multiobjective optimisation , 2000, Eur. J. Oper. Res..

[32]  Chung-Hsing Yeh,et al.  Inter-company comparison using modified TOPSIS with objective weights , 2000, Comput. Oper. Res..

[33]  José H. Dulá,et al.  Performance evaluation based on multiple attributes with nonparametric frontiers , 1999 .

[34]  W. Cooper,et al.  Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software , 1999 .

[35]  Jesús T. Pastor,et al.  Radial DEA models without inputs or without outputs , 1999, Eur. J. Oper. Res..

[36]  Jian Ma,et al.  A subjective and objective integrated approach to determine attribute weights , 1999, Eur. J. Oper. Res..

[37]  R. Green,et al.  Judging Relative Importance: Direct Rating and Point Allocation Are Not Equivalent , 1997, Organizational behavior and human decision processes.

[38]  Ira Horowitz,et al.  The linear programming alternative to policy capturing for eliciting criteria weights in the performance appraisal process , 1995 .

[39]  G. Mavrotas,et al.  Determining objective weights in multiple criteria problems: The critic method , 1995, Comput. Oper. Res..

[40]  F. H. Barron,et al.  SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement , 1994 .

[41]  Ching-Lai Hwang,et al.  Fuzzy Multiple Attribute Decision Making - Methods and Applications , 1992, Lecture Notes in Economics and Mathematical Systems.

[42]  Thomas L. Saaty,et al.  Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation , 1990 .

[43]  Abraham Charnes,et al.  Cone ratio data envelopment analysis and multi-objective programming , 1989 .

[44]  T. Saaty Axiomatic foundation of the analytic hierarchy process , 1986 .

[45]  Boaz Golany,et al.  Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions , 1985 .

[46]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[47]  Dan Horsky,et al.  Estimation of Attribute Weights from Preference Comparisons , 1984 .

[48]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[49]  R. Kalaba,et al.  A comparison of two methods for determining the weights of belonging to fuzzy sets , 1979 .

[50]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[51]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[52]  Ward Edwards,et al.  How to Use Multiattribute Utility Measurement for Social Decisionmaking , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[53]  W. Edwards How to Use Multi-Attribute Utility Measurement for Social Decision Making , 1976 .

[54]  Robert T. Eckenrode,et al.  Weighting Multiple Criteria , 1965 .

[55]  William W. Cooper,et al.  Handbook on data envelopment analysis , 2011 .

[56]  Ying Luo,et al.  Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making , 2010, Math. Comput. Model..

[57]  Lawrence M. Seiford,et al.  Data envelopment analysis (DEA) - Thirty years on , 2009, Eur. J. Oper. Res..

[58]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[59]  H. Deutsch Principle Component Analysis , 2004 .

[60]  F. B. Vernadat,et al.  Decisions with Multiple Objectives: Preferences and Value Tradeoffs , 1994 .

[61]  I. T. Jolliffe,et al.  Generalizations and Adaptations of Principal Component Analysis , 1986 .

[62]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .