Three notions of tropical rank for symmetric matrices
暂无分享,去创建一个
[1] R. Bieri,et al. The geometry of the set of characters iduced by valuations. , 1984 .
[2] M. Drton,et al. Algebraic factor analysis: tetrads, pentads and beyond , 2005, math/0509390.
[3] L. Pachter,et al. Algebraic Statistics for Computational Biology: Preface , 2005 .
[4] L. Pachter,et al. Algebraic Statistics for Computational Biology: References , 2005 .
[5] J. A. Bondy,et al. Graph Theory with Applications , 1978 .
[6] J. van Leeuwen,et al. Discrete and Computational Geometry , 2002, Lecture Notes in Computer Science.
[7] B. Sturmfels,et al. On the rank of a tropical matrix , 2003 .
[8] S. Gaubert,et al. Linear independence over tropical semirings and beyond , 2008, 0812.3496.
[9] James G. Oxley,et al. Matroid theory , 1992 .
[10] Mike Develin. Tropical Secant Varieties of Linear Spaces , 2006, Discret. Comput. Geom..
[11] Alessandro Gimigliano,et al. Secant varieties of Grassmann varieties , 2004 .
[12] Chris D. Godsil,et al. ALGEBRAIC COMBINATORICS , 2013 .
[13] S. Radziszowski. Small Ramsey Numbers , 2011 .
[14] David E. Speyer,et al. The tropical Grassmannian , 2003, math/0304218.
[15] M. Cueto. Tropical Mixtures of Star Tree Metrics , 2009, 0907.2053.
[16] Jan Draisma. A tropical approach to secant dimensions , 2006 .
[17] P. Erdös,et al. The Representation of a Graph by Set Intersections , 1966, Canadian Journal of Mathematics.